
NASA-CR-200613

// f "

College of Engineering

Department of Mechanical,
Industrial, and

Manufacturing Engineering

Grant Report
on

Development of a Prototype Simulation
Executive with Zooming in the Numerical

Propulsion System Simulation

NASA Contract NCC3-207

prepared by

John A. Reed, Research Associate

Dr. Abdollah A. Afjeh, Associate Professor

Mechanical Engineering Department

University of Toledo
Toledo, Ohio 43606

July 1995

Table of Contents

1.0 Introduction 1

1.1 NPSS Prototype Simulation Environment: TESS 1

1.2 Zooming 1

1.3 Report Outline 1

2.0 Application Visualization System (AVS) 3

2.1 Modules 4

2.1.1 Data Inputs 5

2.1.2 Input Parameters 5

2.1.3 Data Outputs 5

2.2 Flow Networks 5

2.2.1 Network editor 5

2.2.2 Flow Execution 7

2.2.3 Data Flow 7

2.3 TESS Data Passing Structure 8

3.0 Engine Component Mathematical Models 10

3.1 Gas Properties 10

3.2 Bleed 10

3.3 Combustor 10

3.4 Compressor 11

3.5 Duct 12

3.6 Flight Conditions and Inlet (Environment) 12

3.7 Intercomponent Volume (Mixing Volume) 13

3.8 Nozzle 14

3.8.1 Subsonic Flow 15

3.8.2 Sonic Flow 15

3.8.3 Supersonic Flow 15

3.9 Shaft 16

3.10Turbine 16

4.0 TESS Operating Paradigm 18

4.1 Applying the Governing Equations 18

4.1.1 The Components Execution Sequence 18

4.1.2 "Running the Engine" 19

4.2 Computing Correction Coefficients 20

4.3 Determining Steady-State Engine Balance 20

4.4 Transient Engine Analysis 21

5.0 Implementation of Operating Paradigm Within

AVS Framework 22

5.1 System Execution Control 22

5.1.1 TESS Message Passing Under AVS 24

5.2 Operating Paradigm Implementation Under

AVS 24

5.2.1 Engine System Connectivity (NSYS

values 0, 1, and 9) 24

5.2.2 Initializing System with Design Point Data

(NSYS value 2) 27

5.2.3 Computing Correction Coefficients (NSYS

values 3 and 4) 27

5.2.4 Initializing System with Initial Operating

Point Data (NSYS values 10 and 8) 28

5.2.5 "Running The Engine" (NSYS values 7, 5

and 6) 28

5.2.6 Balancing Engine to Steady-state

Conditions At Initial Operating Point 28

5.2.7 Transient Analysis of Engine 30

5.3 Modules With Multiple Input Ports 30

5.3.1 Module Execution Control 30

5.3.2 Data Integration 31

6.0 Description of TESS Modules Execution 34

6.1 SYSTEM 34

6.2 SYSTEM-END 37

6.3 Bleed 37

6.4 Combustor 38

6.5 Compressor 40

6.6 Duct 42

6.7 Environment 43

6.8 Mixing Volume 44

6.9 Nozzle 46

6.10 Shaft 47

6.11 Turbine 49

7.0 Simulation Comparison 51

7.1 DIGTEM Fan Model Incompatibility with

TESS 51

7.2 TESS Test Engine Configurations 52

7.3 Results of the Test Engine Simulations 53

8.0 Zooming 58

8.1 Introduction 58

8.2 Zooming Framework 59

8.2.1 Turbofan Engine System Simulator

(TESS) 59

8.2.2 Advanced Ducted Propfan Analysis

Code (ADPAC) 60

8.2.3 Parallel Virtual Machine (PVM) 61

8.3 Prototype Zooming System 61

8.4 Results and Conclusions 63

9.0 LAPIN/TESS Zooming 64

9.1 LAPIN/TESS Framework 64

9.2 Integration Difficulties 64

9.3 Results 65

References 66

Figure 1.1

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 4.1

Figure 4.2

Figure 4.3

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

List of Figures

TESS Graphical Environment 2

AVS Data Visualization Environment 3

Typical AVS Flow Visualization Network 4

Module Interface: the module icon 4

AVS Control Widgets 5

AVS Network Editor 6

AVS Network Editor Windows 6

Top Level Stack Browser 7

Three Connected AVS Modules 9

Data Flow Between Kernel, Modules and

Memory Regions9

Passing the Values of Fuel-air Ratio and
Mass Flow Rate 19

Combined Computational Steps 3, 4, 5,
and 6 20

Graphical Representation of Transient

Control Schedule 21

Flow of Data in an AVS Visualization

Application 22

Representation of Turbine Propulsion System

Core Section 23

Connecting Lines Between Components 24

Example Propulsion System Network 26

TESS Module Types and Codes 26

Contents of comp.list.no File As Read By

AB_DUCT Component 26

Contents of comp.list.no File After

Completion 26

Contents of comp.list.up File After AB_DUCT

Component 27

Figure 5.9 Contents of Completed comp.list.dn File 27

Figure 5.10 Bleed-cooled Turbine Implementation 28

Figure 5.11 Extraction and Replacement of VDOT and

VS Values 29

Figure 5.12 Multiple Input Port Module 30

Figure 5.13 Module Network Connected in Linear

Fashion 31

Figure 5.14 Module Network Connected in Parallel

Fashion 31

Figure 6.1 SYSTEM Module Shown Connected In Typical

Fashion 34

Figure 6.2 SYSTEM Module Control Panel 34

Figure 6.3 Flowchart Describing SYSTEM module
Control Process 35

Figure 6.4 SYSTEM Module Steady-state Methods Pop-

up Windows 36

Figure 6.5 SYSTEM Module Transient Methods Pop-up
Windows 37

Figure 6.6 SYSTEM-END Module Shown Connected In

Typical Fashion 37

Figure 6.7 Bleed Module Shown Connected In Typical
Fashion 38

Figure 6.8 Bleed Module Control Panel 38

Figure 6.9 Combustor Module Shown Connected In

Typical Fashion 39

Figure 6.10 Combustor Module Control Panel 39

Figure 6.11 Compressor Module Shown Connected In

Typical Fashion 40

Figure 6.12 Compressor Module Control Panel 40

Figure 6.13 Duct Module Shown Connected In Typical
Fashion42

Figure 6.14 Duct Module Control Panel 42

Figure 6.15 Environment Module Shown Connected In

Typical Fashion 43

Figure 6.16 Environment Module Control Panel 44

Figure 6.17 Mixing Volume Module Shown Connected In

Typical Fashion 44

Figure 6.18 Mixing Volume Module Control Panel 45

Figure 6.19 Nozzle Module Shown Connected In Typical
Fashion46

Figure 6.20 Nozzle Module Control Panel 47

Figure 6.21 Shaft Module Shown Connected In Typical
Fashion 48

Figure 6.22 Shaft Module Control Panel 48

Figure 6.23 Turbine Module Shown Connected In Typical
Fashion 49

Figure 6.24 Turbine Module Control Panel 49

Figure 7.1 Schematic Representation of Test Engine 51

Figure 7.2 Analytical Model of Test Engine 51

Figure 7.3 DIGTEM Fan Model 51

Figure 7.4 Revised DIGTEM Fan Model 52

Figure 7.5 TESS "Smeared-Fan" Configuration 52

Figure 7.6 TESS "Split-Fan" Configuration 52

Figure 7.7 TESS Smeared-fan Test Engine 53

Figure 7.8 TESS Split-fan Test Engine 54

Figure 7.9 Combustor Fuel Mass Flow Rate Control
Schedule 55

Figure 7.10 Compressor Variable Geometry Control
Schedules 55

Figure 7.11(a) Nozzle Gross Thrust Transient Plot 55

Figure 7.11 (b) Low-speed Spool Transient Plot 56

Figure 7.11(c) High-speed Spool Transient Plot 56

Figure 7.11 (d) Combustor Stagnation Pressure Transient
Plot 56

Figure 7.11 (e) HP Turbine Inlet Stagnation Temperature
Transient Plot 57

Figure 7.12 Comparson of Fan Mass Flow Rates 57

ii

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

List of Tables

5.1 NSYS Values and Engine Operations 24

5.2 Representation of Data Struct 31

5.3 Representation of Data Struct 1 and

Struct 1A 32

5.4 Representation of Data Struct 2 and

Struct 2A 32

5.5 Representation of Data Struct 3 32

5.6 Representation of Data Struct 4 32

5.7 Representation of Data Struct 6 32

5.8 Representation of Data Struct 5 32

5.9 Representation of Data Struct 7 33

7.1 Newton-Raphson Control Parameters 54

7.2 Improved Euler Control Parameters 54

iii

1.0 introduction

A major difficulty in designing aeropropulsion systems
is that of identifying and understanding the interactions
between the separate engine components and
disciplines (e.g., fluid mechanics, structural mechanics,
heat transfer, material properties, etc.). The traditional
analysis approach is to decompose the system into
separate components with the interaction between
components being evaluated by the application of each
of the single disciplines in a sequential manner. Here,
one discipline uses information from the calculation of

another discipline to determine the effects of component
coupling. This approach, however, may not properly
identify the consequences of these effects during the
design phase, leaving the interactions to be discovered
and evaluated during engine testing. This contributes to
the time and cost of developing new propulsion systems
as, typically, several design-build-test cycles are needed
to fully identify multidisciplinary effects and reach the
desired system performance.

The alternative to sequential isolated component
analysis is to use multidisciplinary coupling at a more
fundamental level. This approach has been made more
plausible due to recent advancements in computation
simulation along with application of concurrent
engineering concepts. Computer simulation systems
designed to provide an environment which is capable of
integrating the various disciplines into a single simulation
system have been proposed and are currently being
developed. One such system is being developed by the
Numerical Propulsion System Simulation (NPSS)
project.

The NPSS project, being developed at the
Interdisciplinary Technology Office at the NASA Lewis
Research Center is a "numerical test cell" designed to

provide for comprehensive computational design and
analysis of aerospace propulsion systems. It will provide
multi-disciplinary analyses on a variety of computational
platforms, and a user-interface consisting of expert
systems, data base management and visualization tools,
to allow the designer to investigate the complex
interactions inherent in these systems [1, 2].

1.1 NPSS Prototype Simulation
Environment: TESS

A key component of computational multidisciplinary
analysis simulation systems is the simulation
environment, which integrates the physical sciences,
computer sciences, computer systems software and
computer system hardware into a unified system.

In the current work, a simulation environment for
propulsion systems is developed which provides means
for integrating the multitude of analysis codes, database,
expert systems, etc., into a single "seamless" system, as
well as presenting a user-friendly interface to the end
user. This environment permits choice of analysis
techniques and languages, ability to access and manage

data from various sources, and interpretation of results.
Additionally, it provides heterogeneous distributed
computing support allowing optimal use of computational
resources.

An interactive programming software system, known
as the Application Visualization System (AVS) [3], was
utilized for the development of the propulsion system
simulation. The modularity of this system provides the
ability to couple propulsion system components, as well
as disciplines, and provides for the ability to integrate
existing, well established analysis codes into the overall
system simulation. This feature allows the user to

customize the simulation model by inserting desired
analysis codes. The prototypical simulation environment

for multidisciplinary analysis, called Turbofan Engine
System Simulation (TESS), which incorporates many of
the characteristics of the simulation environment

proposed herein, is detailed (see Figure 1.1) [4].

1.2 Zooming

One unique aspect of computational analysis, which is
to be incorporated into NPSS, is the ability to carry out
computations at different levels of analysis detail.
Because it is expected that a detailed analysis of an
entire propulsion system would be so complex and
computationally intensive as to make it cost-prohibitive, a
method of integrating different levels of analysis is
desired. This concept, termed zooming, would allow
physical processes, resolved from a detailed analysis, to
be integrated within a system analysis performed at a
lower level of detail; and conversely, to allow an engineer
or scientist to "zoom in" on a particular component of the
total system in order to investigate the relevant physical
processes within that component. This provides a most
desirable feature of interactive simulation: various

design alternatives can be rapidly assessed. To support
this feature, interactive graphics visualization may be
incorporated within the simulation to provide the user
with the ability to view the current state of the simulation
through the display of the most recent simulation results.

1.3 Report Outline
This report describes the development a prototype

NPSS simulation executive designed to provide support
for one zooming strategy. The prototype utilizes a
lumped-parameter model for transient and steady-state
propulsion system simulation, with the exception of the
fan component, which is zoomed to a three-dimensional
level and the inlet component which is zoomed to a one
dimensional model. The simulation executive provides
interactive graphical control of various zooming
parameters, and interactive visual monitoring of the
three-dimensional flow field in the fan during the
simulation.

Section 2 introduces the AVS Visualization

environment. In order to more fully understand the
manner in which TESS operates and the constraints
placed in the development of TESS by the graphical

shaft

Figure 1.1 - TESS Graphical Simulation Environment

system, it is necessary to have some knowledge of the
AVS system operating characteristics.

The mathematical models for each of the propulsion
system components currently provided in TESS are
described in Section 3. The engine components
currently included in TESS are all one-dimensional,
lumped-parameter models.

Sections 4 and 5 describe the operating methodology
used to run the simulation and its implementation within
the AVS framework. Because of the operational
characteristics of AVS, certain difficulties had to be
overcome in order to control the simulation. These
difficulties and their solutions are discussed in Section 5.

Section 6 gives a description of each of the modules
used to represent engine components within TESS. The

graphical interfaces for each module in TESS are
described along with a description of how the modules
are to be connected.

The results of a simulation of a test engine using
TESS are compared with output from another computer
simulation code (DIGTEM) in Section 7.

In Section 8, the zooming concept is described in
more detail, with specific application to the fan
component in a turbofan propulsion system. The
graphical zooming framework, comprised of TESS, a
fully three-dimensional Navier-Stokes/Euler flow analysis
package capable of providing detailed flow analysis of
the fan component in a turbofan engine, a parallel
distributed message passing package, and visualization
tools, created to aid the user in monitoring the zooming
process, are presented.

In Section 9, a final zooming application is presented.
Here, a one-dimensional, finite-difference model, used to

simulate the inlet of a jet propulsion system is zoomed
from the TESS lumped-parameter model.

2

2.0 Application Visualization System

(AVS)
In order to fully discuss the development of TESS, it is

necessary to have an understanding of the AVS
visualization environment. AVS is a software tool

designed primarily to provide scientific and engineering
users with the ability to easily analyze and view their
data. It allows users to construct visualization

applications by combining software components, known
as modules, into executable flow networks that are used
to filter the data, map it to pixel or geometry form, and
render it on the display screen (see Figure 2.1).

Flow networks, or simply networks, are constructed
by direct user manipulation of modules in the AVS
Network Editor programming interlace. Using the
Network Editor, a user creates an application by
selecting modules from a menu and drawing
connections between them (see Figure 2.2). Data are

either read in from a file or generated by a module at the
top of the flow network and passed to the module(s)
below. The path of data exchange is represented
graphically by the connecting wires between the
modules - the data are referred to as being "passed
along the connection wire". In this manner, control of
data exchange between modules is defined by how the
modules are connected. As each module receives new

input data it executes, generating new output data that is
sent to the next module in the network.

The inclusion of a rich set of modules in the AVS

system means that in many cases, an entire
visualization application may be constructed using
standard modules, removing the need to resort to
traditional procedural programming. In the event that
additional programming is needed, AVS allows users to
create their own new modules and dynamically load
them into AVS networks.

It is this extensibility of AVS that provides the ability to

Figure 2.1 - AVS Data Visualization Environment

Figure 2.2 - Typical AVS Flow Visualization Network

utilize AVS as a simulation environment for the engine

simulation code. Since AVS was not designed for

propulsion system simulation, the visualization modules

supplied with AVS are typically not of any use in

constructing an engine model. But because AVS allows
the user to create their new modules and load them into

the system, modules representing each of the engine

component objects may be created and used in
developing engine models.

2.1 Modules

The module is the AVS computational unit with which

applications are built. A module, written in either
FORTRAN or C programming languages, is designed to

be a powerful, yet easy to use, processing component. It

functions by taking typed data as an input, operates on
that data by executing the code in its computation

function, generating new output data which is then sent

to the next module(s) in the network.

Each module is capable of being instantiated multiple

times within an application by virtue of the fact that each
module executes within its own UNIX process. This

allows each module to operate independently, even

though modules of the same type have the same
FORTRAN or C code. Thus, AVS modules are able to

emulate some of the characteristics of objects in an

object-oriented programming language, such as multiple
instantiations of objects and data encapsulation [5],

without programming in an object-oriented language.
Because AVS modules operate in separate UNIX

processes, AVS provides the ability to execute modules

remotely on another host of the same or differing
hardware as the local machine running AVS. This

provides the ability to construct efficient processing

networks by running computationally intensive modules

remotely on powerful hosts such as mini or

supercomputers.
A module's interface to the user is the module icon,

(see Figure 2.3). Each module's interface is simple and
consistent and will include the following:

• A set of input data ports

• A set of input parameters

• A set of output ports

Figure 2.3 - Module Interface: The Interface Icon

2.1.1 Data Inputs

Data are input to a module through one or more input
ports of the module. These input ports appear as colored
bars located along the top edge of the module icon. The
color of the input ports indicates the type of data the
module is capable of receiving. Some of the data types
supported by AVS are: field, colorrnap, geometry,
integer, floating point, string and user-defined data. AVS
allows only those modules sharing common data types
to be connected when constructing a network. The input
ports are classified as either REQUIRED or OPTIONAL.
If a module has a REQUIRED input port, that port must
be connected to another module, in order for the module
to execute.

2,1.2 Input Parameters

A module's input parameters control the manner in
which a module processes the input data. They provide
the user with interactive control of a module's operation
along with providing an interface to allow the user to
enter input data. Input parameters also can be
implemented so that they reflect real-time changes of
certain parameters in the module.

A rich set of control widgets is available to control the
module's input parameters. AVS includes the following
types of control widgets (see Figure 2.4):

• Dials and Sliders indicate integer or floating point
numbers

° Typeins allow the user to specify a character string
or numeric values

• Toggles provide on/off control for various parameters

• Radio Buttons provide mutually exclusive choices to
the user

• File Browsers allow a user to access system files to
read, or create a file to which output is sent

2.1.3 Data Outputs

Once a module has processed its input data, it may
be output through one or more module output ports.
These appear as colored bars located along the bottom
edge of the module icon. As with the input ports, they are
color-coded to indicate what type of data the module is
outputting.

2.2 Flow Networks

By using the AVS Network Editor, a mouse driven
graphical interface, a user can select modules from a
menu, and connect the modules together to form a
network. The network can then be executed as desired
and later saved to disk to be recalled when needed.

2.2.1 Network editor

The Network Editor (see Figure 2.5) is accessed from
the AVS Main menu and is comprised of four windows:
Network Control Panel, Network Editor Menu, Module

Palette, and Workspace (see Figure 2.6).
The user constructs a network by selecting a module

from the Module Palette using the mouse pointer. The
pointer allows the user to focus attention and initiate
action on particular portions of the display. The selected
module is then dragged from the Module Palette into the
Workspace. When the module is placed in the
Workspace, it becomes an instance of the module listed
in the Module Palette. At this time, the widgets
controlling the input parameters for the module will
appear in the Network Control Panel window. As
described in Section 2.1.2, these widgets provide
interactive control over module execution and can now

be adjusted as desired. Also, the name of the module
will appear in the stack list browser widget in the
Network Control Panel window (see Figure 2.7).

Figure 2.4 - AVS Control Widgets

Figure 2.5 - AVS Network Editor

Network
Control
Panel

Network
Editor
Menu I Module Palette

Workspace

Figure 2.6 - AVS Network Editor Windows

A_ S (Untitled)

_tatus (press to disable

Te l) Level Stack

Page Selector

Value: compressor

Figure 2.7 - Top Level Stack Browser

If another module is dragged from the Module Palette

into the Workspace, its input parameter widgets will

appear in the Network Control Panel window, replacing

the previous module's widgets, and the name of the
module will appear in the list browser widget. Each

module has a page which holds the input parameter

control widgets for that module. When more than one

module is in the workspace, there will exist a page for

each of the modules. These pages are then placed in a

stack, much like pages of paper can be organized by

placing them in a stack. The stack list browser allows the

user to access a page from the stack by selecting it from

the list using the mouse pointer.

The connecting lines between modules are

established by using the mouse to connect the module's

input and output ports. This defines the network and
specifies the manner in which data flows in the

application. For the engine simulation, the connecting

lines represent the connection between each of the

components of the engine along which data are passed.
In physical terms, the connecting lines represent both

the flow path for fluid through the engine and the

structural connections along which mechanical energy is
transmitted.

2.2,2 Flow Execution

The execution of an AVS Network is controlled by the
AVS kernel, which in turn, controls the AVS Flow
Executive. The Flow Executive determines when a

module should execute based on certain criteria, and
then directs it to execute. When the AVS Flow Executive

is active (the user may turn it off to stop the network from
executing), it determines whenever any of the module's

input ports or parameters change. If the input port of a

module is connected to the output port of another

module, the AVS kernel marks the input port as having

changed when it receives new data from the other

module. A parameter is marked changed when its value

has been modified by the user. In either case, the AVS

Flow Executive then schedules the module to execute its

computation function based on the new input data or

input parameter.

The manner in which the network operates is

dependent in part on the type of modules which

comprise the network. There are two types of AVS
modules: Subroutines and Coroutines.

• Subroutine modules are essentially passive, much

like subroutines in a traditional program. When a
subroutine module is instantiated, it's UNIX process

sleeps until the Flow Executive signals it to execute.

The subroutine module then takes its input data,

operates on it, passes the data to the next module in

the network, and returns to its dormant state.

• Unlike a subroutine module, the coroutine module's

UNIX process is always active. Thus, the coroutine
module can access input data, operate on the data

and output it to the network on its own initiative

instead of only doing so when signaled by the Flow
Executive.

It is important to understand that execution of a

subroutine module is completely within the control of the
AVS Flow Executive. Because the execution of the

modules is linked to the changing of input port data and

input parameters, it is not possible to explicitly control
module execution 1. When subroutine modules are

connected to form a network, each module executes

only upon receiving changes in its input data. This type

of operation may be thought of in terms of the domino

theory. That is to say that once the first module in the

network executes, the remainder of the modules will

execute much like dominos in a line, tumbling

sequentially after the first one has been pushed over.

Once the process has begun, all of the modules operate
on there own when triggered by the previous module.

All of the modules used in TESS are subroutine

modules with the exception of the SYSTEM module,
which is a coroutine module.

2.2.3 Data Flow

The AVS applications which are built by connecting

modules together, function by passing data from module

to module. Because the modules (normally) run within

separate UNIX processes, some form of interprocess
communication must be available to pass the data along
from module to module. One method which allows the

sharing of data among modules within different

processes utilizes shared memory regions. The data

from the output of a module is placed in a memory region

which has been created by the AVS kernel by making

UNIX system calls. Multiple modules may then access

the single copy of data by making UNIX system calls.

1. Actually,AVS has made it possible to control subroutineand
comutinemoduleexecutionexplicitlyusingthe CommandLanguage
Interface(CLI). The CLI providesa listof commandswhich can be
usedto controlcertain aspectsof networkoperation,such as exe-
cutinga module.At the time TESS was developed,thisoptionwas
notavailable,andthus,was not implemented.

7

The shared memory region method of interprocess
communication is the normal method which AVS uses to

communicate data between processes. The AVS kernel
attempts to share data when possible by placing data in
the shared memory region. Pointers to the memory
addresses are then passed between modules to allow
the modules to access the necessary data. By sharing
data between modules, memory usage is reduced and
processing speed is increased because the data does
not have to be copied between processes.

To better explain how data is passed between
modules, consider three modules connected as shown in
Figure 2.8. Figure 2.9 shows the corresponding data
flow diagram for the network. M1, M2 and M3 are the
modules, K is the AVS kernel, and D1 and D2 are the
shared memory areas allocated for data. The AVS
kernel's control communication channel (indicated by the

dotted line) informs M1 that M2 requires its data. M1
then places its output data in the shared memory region
(indicated by the arrows). The AVS kerners control
communication channel then informs M2 that M1 has

sent its data to the shared memory region, DI. M2 is
then able to access the data in the shared memory

region. In this method, there is only one copy of Ml's
output data.

Figure 2.8 - Three Connected AVS Modules

Figure 2.9 - Data Flow Between Kernel, Modules and

Memory Regions

Once the data from M1 has been established in the

memory region D1, M2 can copy the data into its internal
arrays. This is done so that the module can operate on
the data without affecting it directly. Once M2 has

operated on the data to create output data, it is placed in
the next memory region, D2. M3 is now notified by the
kernel that it has new input data and is scheduled to

execute and may access its data from D2.

2.3 TESS Data Passing Structure
As stated in Section 2.1.1, the data passed along the

connecting wires is typed. AVS provides a variety of data
types: field, colormap, geometry, integer, floating point,
string and user-defined data. It was found in the
development of the TESS code, that it would be
necessary to exchange both floating point and integer
values between modules. If the floating point and integer
data types were utilized, this would require that each
module have both integer and floating point input and

output ports. Furthermore, there would be two
connecting lines between connected modules: one for
each of the data types. This would greatly complicate the
visual representation of how the engine component
modules were connected.

To solve this problem, the user-defined data type was
utilized. As the name suggests, AVS allows the user to
define their own data types and to use the data types for
inter-module communication. In TESS, the user-defined

data type is defined in the header file
tess_user_data.h, and has the form of a C
structure. The variables defined in the struct are the

variables needed by the various modules available in
TESS (for more information on these variables see [3]).
The contents of tess_user_data.h are listed
below:

typedef struct {

int nsys;

int nauxvar;

float time;

float massflow In];

float fuelflow In];

float temp [n];

float press [n];

float rpm [n];

float enthalpy [n];

float strdmass [n] ;

float faratio [n];

float energy [n];

float volume [n];

float massflow_deriv In];

float temp_deriv [n];

float rpm_deriv [n];

float strdmass_deriv [n];

float thrust [n] ;

float vargeom [n] ;

int chkflag [n];

} tess_user_data;

Each of the variables (with the exception of nsys,
nauxvar, and time) is a vector array of length n. The
value of n is dependent on the maximum number of

8

moduleslikelytobeusedinanenginesimulation,andis
usedtoreservememoryspace.Thevectorindices(1,2,
3.... n) correspond to the different modules in a
simulation. Data corresponding to each module is then
arranged within the vector, and made available to the
system, providing a structure for accessing and storing
information about the state of each of the modules in the

system.

For each of the memory regions which is used to store
data common to the connected modules (see Section
2.2.3), the data in the memory region will be stored in the
format defined in the tess_user_data, h file.

3.0 Engine Component Mathematical
Models

The mathematical model for each engine component

currently included in TESS is presented in this Section.

The engine component models are one-dimensional,

lumped-parameter, thermodynamic models. The

unsteady forms of the continuity, momentum and energy
equations are used to generate ordinary differential

equations which are used to model the complete

propulsion system. A detailed discussion of the
development of these models is given in [4].

3.1 Gas Properties

The thermodynamic properties of air and fuel-air

mixtures are calculated by considering variable specific
heats and no dissociation. Curve fits of data found in [6]

are used to compute specific heats, specific heat ratios,

and specific enthalpies from given values of temperature
and fuel-air ratio. For each engine component, the

following equations are used

c = f(T, (f/a)) (3-1)
p

R = f(f/a) (3-2)

c v = cp-R

c

T= p
C v

where Pin = Stagnation pressure at the bleed inlet

Tin = Stagnation temperature at the bleed inlet
A = Cross sectional area of the bleed pas-

sage

7 = Specific heat ratio of fluid in the bleed

passage

3.3 Combustor

The combustor provides thermal energy addition to

the system through the combustion of fuel. The heat
addition associated with the burning of the fuel is

assumed to take place in the mixing volume directly

downstream of the combustor. Stagnation pressure
losses are included in the combustor model. Because of

the greater temperature rise through the combustor, the
assumption of constant specific heat ratio based on the
inlet conditions could lead to difficulties in matching

steady-state conditions. For this reason, an "average"

combustor temperature is computed based on inlet and

exit temperatures, and used to compute an average

specific heat ratio and enthalpy of the working fluid in the
combustor.

The mass flow rate in the combustor is

rpin (Pin -Pout) 1 (3-7)rh
JL

where Pin =
(3-3)

Pout =

(3-4) T/n =

h = f(T, (f/a)) (3-5)

While the gas constant, R, is in general a variable
when mixtures of gases are considered, according to

Szuch [7], the sensitivity of R to the fuel-air ratios in a

turbojet simulation could be neglected. Therefore, the

gas constant of air may be used in the ideal gas law. The
use of a constant value of R also prevents the

occurrence of algebraic loops which require iterative
solutions.

3.2 Bleed

Bleed components are used to provide turbine cooling

and auxiliary drive air. Bleed air is assumed to be

provided from a high pressure source (such as the exit of

a compressor), and supplied to a component which is at
a sufficiently low pressure so that flow in the bleed

passage is choked. The following describes the equation
for the bleed model.

The mass flow rate, m, of fluid in the bleed passage is

r 2 (3- 1rn = Api" L (-'_'-_J

Stagnation pressure at the combustor
inlet

Stagnation pressure at the combustor
exit

Stagnation temperature at the combustor
inlet

K c = Combustor pressure loss coefficient

The specific enthalpy of the fluid in the combustor is

based on the average temperature of the combustor air-

fuel mixture. The average temperature is given as

Tavg = _Tin + Tou t (1 - _) (3-8)

where Tavg = Average stagnation temperature in the
combustor

Tout -- Combustor outlet stagnation temperature

13 = Combustor interpolation constant

The combustor fuel air ratio V/a), is computed as

(f/a) = (f/a)in+ [(f/a)i.+ l]l _fuetl
k m=_=)

(3-9)

where (f/a)in

rh fuel

/h gas

=The fuel air ratio of the gases entering
the combustor

=The fuel mass flow rate being added to
the combustor

=The mass flow rate of the gases enter-

ing the combustor

10

Theenthalpyof the air-fuel mixture in the combustor,
h, is then determined from curve fit data based on the

average combustor temperature and the combustor fuel-
air ratio:

h = f(Tavg, (f/a)) (3-10)

The rate of energy being added to the working fluid

due to the combustion of the fuel, Ecomb, is

Ecomb = thfuet'13 . HVF (3-11)

where q = Combustor efficiency

ttVF = Heating value of fuel

Ecomb is referred to as the combustor energy term and

represents the energy flux term for the combustor due to

fuel combustion. Because the combustion process is

assumed to take place in the downstream mixing

volume, Eco,, b is the rate of heat addition to the mixing
volume due to fuel combustion. Heat addition to the

mixing volume is given by the 6 Q/dt term in the mixing

volume dynamic energy equation. Thus, E,.<,mbwill be

used by the mixing volume to account for the heat
addition due to fuel combustion.

3.4 Compressor

Compressor performance is represented by a set of

overall performance maps normalized to design point

values. Baseline performance maps provide normalized

inlet-corrected mass flow rate and normalized efficiency

as a function of normalized pressure ratio and

normalized, inlet-corrected spool speed. Shifts in

normalized inlet-corrected mass flow rate, based on (un-

normalized) off-schedule values of variable stator

position, are also provided as a function of normalized

pressure ratio and normalized inlet-corrected spool

speed. Because of the greater temperature rise through
the compressor, the assumption of constant specific heat
ratio based on the inlet conditions could lead to

difficulties in matching steady-state conditions. For this

reason, an "average" compressor temperature is

computed and used to compute an average specific heat

ratio. The following equations describe the compressor
model.

The normalized inlet-corrected mass flow rate value is

obtained from the baseline compressor performance

map. The map represents compressor performance with

the variable geometry at nominal, scheduled position:

mhase, c, n = f(Nc, n' APn) (3-12)

where _hbase.c,n = Baseline inlet-corrected mass flow
normalized to design point

No,n = Corrected spool speed normal-

ized to design point

Apn = Stagnation pressure ratio normal-

ized to design point

The normalized corrected mass flow rate which

accounts for off-schedule geometry effects is obtained

from the variable-geometry effects performance map:

t_var, c, n = f(CVGP, APn) (3-13)

where th var,c,n

CVGP

= Inlet-corrected mass flow for off

schedule geometry, normalized to

design point

= Compressor variable geometry
position value

The mass flow rate in the compressor may be given
as

tiZbase, c,/1 (1+ tnl.'ar c /1)r, S,._.1(_,. I <_ ,.>

" L °_ Ti. ACP,/1.,)

where md = Design point value of compressor mass
flow rate

Tin = Stagnation temperature at compressor
inlet

Tin,a = Design point stagnation temperature at
compressor inlet

Pin = Stagnation pressure at compressor inlet

Pin,,/ = Design point pressure at compressor
inlet

When the normalized inlet-corrected mass flow rate at

the design point, tnbase.c,n, is returned from the map, the
value should be exactly 1.0. However, because the map

values are determined by an interpolation routine (see

[3], Appendix C), it may not be exactly 1.0. This error can

be eliminated by introducing a correction coefficient,

Wcorr , which when multiplied by the returned map value

will make the returned map value be exactly 1.0. The

compressor mass flow rate correction coefficient is

l
Wcorr = (3-15)

(ti_base, c, n) map @designpt

Placing the correction coefficient into Eq.(3-14) gives

i-,,,]
L Ti/1lt.e,/1,<,)w,.

(3-16)

The normalized adiabatic efficiency value is obtained

from the baseline compressor performance map.

1]base, c, n = fmap (Nc,/1' Z_Pn) (3-17)

where 13base,c,n = Adiabatic efficiency, normalized to
design point

The adiabatic efficiency, 13, is then computed by

multiplying the normalized adiabatic efficiency, 13/1,by the

design adiabatic efficiency value, 13a:

q = 13n'13d (3-18)

11

The stagnation temperature rise across the
compressor is calculated using isentropic relationships

for stagnation temperature and pressure. The stagnation
temperature rise is determined using an average

temperature which is computed using a temperature

interpolation constant:

Tavg = _J_n+ Tut(l-_J) (3-19)

where Tav_ = Average stagnation temperature in the

compressor

T,,ut = Compressor outlet stagnation tempera-
tu re

T/, = Compressor inlet stagnation temperature
13 = Compressor interpolation constant

Tav_ is used to determine the constant specific heat of
the compressor from curve fit data. With the constant

specific heat known, the isentropic stagnation

temperature rise is defined as

/%,;c</ _) (3-20)

where Pin =

Pout =

•y =

Defining the

Compressor inlet stagnation pressure

Compressor outlet stagnation pressure

Compressor constant specific heat ratio

stagnation temperature rise parameter as

AT) (Tout, ideal-Tin) T°ut'ideal 1 (3-21)
_in ideal = Tin - Tin

then, Eq. (3-20) becomes

(_)id,al = (P°utl ¢'-1)/_'
(3-22)

The stagnation temperature at the compressor outlet
is then

I (A T/ T;")ideal] (3-23)T ut = + I Tin

The compressor temperature correction coefficient is

AT/Tinideal@designpt (3-24)
Tc°rr = ATd/Tin, dideal

The enthalpy corresponding to the temperature at the

compressor outlet, hour, is determined from curve fit data

based on values of stagnation temperature and the fuel-
air ratio Or�a) in the compressor:

hout = f(T out, f/a) (3-26)

The compressor functions by transmitting mechanical

energy (supplied by the shaft) into kinetic energy in the

fluid flow. The rate of this energy conversion is calculated

as the difference in fluid energy at the inlet and exit of the

compressor and is given by the following equation:

Ecomp = th (h ou t- hin) (3-27)

where Ecomp = The rate of energy being added to the
working fluid

th = The mass flow rate of the working fluid

in the compressor

hi, ' = The specific stagnation enthalpy of the
working fluid at the compressor inlet

hour = The specific stagnation enthalpy of the

working fluid at the compressor outlet

Ecomp is referred to as the compressor energy term,
and represents the rate of energy being transferred from

the shaft to the working fluid. This term is used to

compute the torque applied to the compressor by the

shaft, and is utilized in the dynamic energy balance

equation given in the shaft mathematical model.

3.5 Duct

The effect of fluid momentum on the transient

behavior of the engine is considered in the duct

component. The model assumes the duct is adiabatic

with constant area and length; and the pressure loss due
to frictional effects is included. The following is the

dynamic flow equation for the duct:

where A = Cross sectional area of the duct

L = Length of the duct

Pin = Stagnation pressure at the duct inlet

Pout = Stagnation pressure at the duct exit
Ka = Duct pressure loss coefficient
th = Fluid mass flow rate in the duct

T/n = Stagnation temperature at combustor
inlet

Placing the correction coefficient into Eq.(3-23) gives

[(ATIT'.)iaeal)L,., =L n:_ +l r,. (3-25)

3.6 Flight Conditions and Inlet

(Environment)
Stagnation temperature and pressure at flight altitude

are determined from standard atmospheric data tables:

12

Part = f(alt) (3-29)

Tit = f(alt) (3-30)

where air = Altitude

Palt = Stagnation pressure at altitude

Tatt = Stagnation temperature at altitude

Tsts = Sea level standard ambient temperature

Although no inlet to the engine is included, simple

isentropic and empirical relations are used to determine

the stagnation conditions at the "inlet" exit. The

stagnation temperature at the inlet exit based on the

flight Mach number is computed as

Texit = Tal t 1 + 2 J

where Texit = Stagnation temperature at inlet exit

7 = Specific heat ratio of ambient air
(7 =1.4)

Mflight = Flight Mach number

A steady-state, military specification inlet recovery

characteristic is used to determine the stagnation

pressure at the inlet exit:

qiniet = 1 if (Mflight <- l)

1.35

lqinlet = 1-O.075(Mflight-l) if (Mflight<-l)

Texit]7 (Y- l)

Pexi,= k)
(3-32)

where rl inlet = Inlet recovery characteristic

Pexit = Stagnation pressure at inlet exit

The enthalpy of the air at the flight altitude is
determined from curve fit data based on the stagnation

temperature at altitude and the fuel-air ratio (which is

zero):

h = f(Tal t, (f/a)) (3-33)

3.7 Intercomponent Volume (Mixing

Volume)
An intercomponent volume (mixing volume) is placed

between engine components. In the volume, the storage

of mass and energy occurs and the dynamic forms of

continuity, energy and state equations are used to

generate differential equations which can be solved for
the stored mass, temperature and pressure. The

following develops the dynamic equations stated above.

The rate of change of mass in the control volume is

dM
- y_.,/,- ,y_,,. (3-34)dt

inlets exits

where M = Mass of working fluid in control volume
th = Fluid mass flow rate

The rate of change of temperature in the control
volume is obtained from the first law of Thermodynamics

as

FZmh h v m+ o
-- av, L_dT Linlets inlets

dt Mc v

+ "---"-M_ F £(7- i) TLinletsr h _ Z lexitsrh
(3-35)

where T

8Q/dt

$W/dt

h

havg

U

7

C V

= Stagnation temperature of working
fluid in control volume

= Rate of energy entering control vol-
ume due to heat transfer

= Rate of energy leaving control volume
due to all work interactions except
flow work

= Specific stagnation enthalpy of work-

ing fluid entering the control volume

= Specific stagnation enthalpy of work-

ing fluid in the control volume

= Internal energy of working fluid
= Constant specific heat ratio of working

fluid in control volume

= Constant-volume specific heat of

working fluid in control volume

At the (steady-state) design point, the above

differential equation should be exactly zero, indicating
that the mixing volume energy balance is satisfied at the

design point. However, model incompatibilities and

numerical inaccuracies may result in a non-zero

temperature derivative value. To zero the derivative

value associated with the energy balance, a correction

coefficient, Ecor. is introduced into the above equation to
force it to zero

Ecor r = L', inlets / inlets (3-36)

where all values are design point values. If the 80y'dt

term is zero, then Ecorr is set to 1.000. Once determined,
the correction coefficient then becomes part of the model

and the governing differential equation associated with

the energy balance for the mixing volume becomes:

13

dT
m =

dt Mc v

(3-37)

3.8 Nozzle

A convergent-divergent nozzle configuration is

assumed for the nozzle model, with a convergent-only

nozzle being considered a subset of the more general

model. A relatively detailed mathematical representation

of the thermodynamics is used, including the treatment

of normal shocks in the divergent section. The

stagnation pressure losses associated with the shocks

are computed along with the gross nozzle thrust. The

following equations define the nozzle model.
The ideal mass flow rate for a nozzle operating in

"choked" condition (i.e. the Mach number at the nozzle

throat is 1.0) can be determined from isentropic relations

[8]. Pressure losses due to boundary layer effects and

departure from one-dimensionality can be calibrated into
the ideal mass flow rate above equation through the use

of a flow coefficient, Ca, to obtain:

° A*r f-i-_ r---_--2 1¢x+'l/2_-')
'* = "/"- -"_R-_,.L(_'+ l)J

(3-38)

where Pin = Nozzle inlet stagnation pressure

T/n = Nozzle inlet stagnation temperature

R = Ideal gas constant

_, -- Nozzle specific heat ratio (T= 1.4

is used)
A* = The critical nozzle cross sectional area

The nozzle gross thrust, F, may be calculated as

F = thv e + A e (Pe -Pout) (3-39)

where Pe = Static pressure at nozzle exit plane

Pout = Ambient static pressure
ve = Nozzle flow exit velocity

A e = Cross sectional area at nozzle exit plane

The compressible flow tables used in computing the

nozzle operation parameters assume a specific heat
ratio of 1.4. According to Szuch [7], the specific heat ratio

in the tailpipe of a turbofan engine will be lower than this

value. To compensate for this error when setting up the

model to match the user-defined input data, correction

coefficients are computed to give the desired values of

gross thrust and mass flow rate for the nozzle. The

correction coefficient for the gross thrust, Fc,r,, is the

ratio of user-defined design gross thrust, F a, to the

calculated design gross thrust, Fc, given by the above

equation:

F d
F = -- (3-40)

corr Fc

Once calculated, this value is used in the thrust

equation at design and off-design conditions, and Eq.(3-

39) is then

F = (rhVe) Fcorr + A e (Pe-Pout) (3-41)

The correction coefficient for the mass flow rate, Wcorr

is the ratio of user-defined design mass flow rate to the

calculated design mass flow rate given by Eq.(3-38):

rh d
W = --

corr tit
c

(3-42)

Once calculated, this value is used in the mass flow

equation, Eq.(3-38), at design and off-design conditions

to give the nozzle mass flow rate

th = Wc°rrP" A*Cd _ [(-'_'_12 (7+ I)/2('Y- 1)
m _RTin

(3-43)

The exit velocity of the nozzle flow is determined using

the following equation

Vx 2TRTin I/2
(3-44)

where Ve = Flow velocity at the nozzle exit

Cv = Nozzle velocity coefficient

vx = Flow velocity upstream of shock

Vy = Flow velocity downstream of shock

Defining the critical cross-sectional area, A*, as the
area where the flow is sonic (M=I), the ratio of some

arbitrary nozzle cross-sectional area to the critical area

may be used to determine the pressure ratio across the
nozzle which causes the flow to be sonic in the nozzle at

the critical cross-sectional area. The pressure ratio
which causes the flow to be sonic is known as the critical

pressure ratio

_ cr _

where PA = Ambient static pressure at location of A

Pin = Stagnation pressure at nozzle inlet
A = Arbitrary cross-sectional area of nozzle
A* = Critical cross-sectional area of nozzle

The critical pressure, for a given area ratio, is
determined from one-dimensional isentropic tables for

compressible flow. Sonic flow will occur at the minimum

14

cross-sectional area of the nozzle which is at the throat,

and Eq. (3-45) becomes

Pin :cr
(3-46)

3.8.1 Subsonic Flow

If (Pout/Pin) > (Pout/Pin)cr, the flow is subsonic throughout
the nozzle. In this case,

Pe = Pout (3-47)

The area to which the throat area would have to be

reduced to result in sonic flow (M=I) based on the

pressure ratio value, may be determined from the one-

dimensional isentropic compressible flow tables. If A e is

used as the arbitrary cross sectional area, then the ratio

of the exit area to the critical cross-sectional area may be
found

A* is then determined using the following equation

A
A* - e (3-49)

(Ae/A*)

The value of A* may then be used in Eq.(3-43) to

compute the mass flow rate in the nozzle. The velocity

ratio term (vx/Vy) is 1.0 since there is no shock. This value
is substituted into Eq.(3-44) to compute the nozzle exit

velocity.

3.8.2 Sonic Flow

If (Pout/Pin) = (Pout/Pin)or, then the flow is sonic in the
nozzle. In this case, the nozzle exit pressure is equal to

the ambient pressure

Pe = Pout (3-50)

Since (Pout/pin) = (Pout/Pin)c_ the flow is sonic at the
minimum nozzle cross-sectional area which is the throat.

Thus, the throat area is the critical area for the nozzle

and Athrout may be used in Eq.(3-43) in place of A* to

compute the mass flow rate in the nozzle. The velocity

ratio term (vx/vv) is 1.0 since there is no shock. This value
is substituted into Eq.(3-44) to compute the nozzle exit

velocity.

3.8.3 Supersonic Flow
If the pressure ratio is less than the critical pressure

ratio, (Pou/Pin) < (Pou/Pin)cr the flow is supersonic in the

nozzle. If the nozzle is a converging-diverging nozzle,

normal shocks will likely be present in the flow and the

pressure losses are accounted for. To determine if the

nozzle is a converging-only or a converging-diverging
nozzle, the ratio of the exit area to the throat area is

compared.

Converging-Only Nozzle (Aexit/Ath,,at = 1)

For sonic flow in a converging-only nozzle, the throat

area is the critical area for the nozzle and Athroat may be

used in Eq.(3-43) in place of A* to compute the mass

flow rate in the nozzle. The velocity ratio term (VJVv) is
1.0 since there is no shock. This value is substituted into

Eq.(3-44) to compute the nozzle exit velocity. The nozzle

exit plane stagnation pressure will be less than the
ambient pressure. This value may be computed using

the critical pressure ratio

Pout)

Pe = Pin_ _in)c r
(3-51)

This value may be used in Eq.(3-39) to compute the

nozzle pressure drag.

Converging-Diverging Nozzle (Aexit/Athroat) > 1)

For supersonic flow in a converging-diverging nozzle,
the throat area is the critical area for the nozzle and

Ath,oat may be used in Eq.(3-43) in place of A* to

compute the mass flow rate in the nozzle. The

converging-diverging nozzle, operating in the supersonic

region, will likely have normal shocks present in the
divergent portion of the nozzle or outside of the nozzle.
To determine if the shock is outside the nozzle, the

pressure ratio at which the shock is in the nozzle exit

plane is given by the following equation

Pout] (Py/Px) (Ps, y/Ps, x)
Pin)es (Py/Ps, x)

(3-52)

where py = Stagnation pressure downstream of
shock

Px = Stagnation pressure upstream of shock

Ps,y = Static pressure downstream of shock

Px,x = Static pressure upstream of shock
es = Expelled nozzle shock

The parameters given in the above equation may be

determined from shock tables such as those given in
reference 19.

If (Pout�Pin) = (Pout/Pin)es, the shock is in the nozzle exit

plane. The velocity ratio term (vx/vy) is determined from
the shock tables based on the Much number upstream of

the shock

v--x = f(Mx) (3-53)
Vy

15

The exit pressure will be returned to ambient pressure
due to the shock, so

Pe = Pout (3-54)

This value may be used in Eq.(3-39) to compute the

nozzle pressure drag.

Shock external to nozzle

If (Pou/Pin) < (Pou/Pin)e._, the shock has been expelled

from the nozzle. The velocity ratio term (vj/Vy) is
determined from the shock tables based on the Mach

number upstream of the shock

V x

-- = f (Mx) (3-55)
V

Y

This value is substituted into Eq.(3-44) to compute the

nozzle exit velocity. The nozzle exit stagnation pressure

may be computed using the critical pressure ratio

POU t]Pe = Pin(_ cr
(3-56)

This value may be used in Eq.(3-39) to compute the

nozzle pressure drag.

Shock internal to nozzle

If (pouilPin)cr > (pout/Pin) > (pouflPiti)es, the shock is in the
divergent section of the nozzle. In this case, the nozzle

exit pressure is equal to the ambient pressure

Pe = Pout (3"57)

This value may be used in Eq.(3-39) to compute the

nozzle pressure drag. The velocity ratio term (vx/vy) is
determined from the shock tables based on the Mach

number upstream of the shock

V x

_ = f(Mx) (3-58)
V

Y

This value is substituted into Eq.(3-44) to compute the

nozzle exit velocity.

3.9 Shaft

The most significant factors in determining the
transient behavior of a turbojet are the spool moments of

inertia. The spool is considered the complete

compressor-shaft-turbine assembly. The differential

equation representing the change in spool speed is

dN (30 "_2j i
= t) ZE,urhl (3-59)

where ! = Polar moment of inertia of the

spool(compressor+shaft+turbine)
J = Joulean mechanical equivalent of

heat constant

N = Shaft rotational speed

]_Ecomp = The summation of the energy flux
term, mAh, for each compressor
attached to the shaft

ZEturb = The summation of the energy flux
term, mAh, for each turbine
attached to the shaft

At the (steady state) design point, the above

differential equation should be exactly zero, indicating

that the spool energy balance is satisfied at the design

point. However, model incompatibilities and numerical

inaccuracies may result in a non-zero spool derivative
value. To zero the derivative value associated with the

energy balance, a correction coefficient, Ecom is

introduced into the above equation to force it to zero

E E comp@designpt

Ecorr = _Z Eturb@designp t

(3-60)

Once determined, the correction coefficient then

becomes part of the model and the governing differential

equation associated with the energy balance for the

spool is

dN (30 _2 j 1
d'I_ = \'-_) _[ZEcomp + (EcEEturb)] (3-61)

3.10 Turbine

Turbine performance is represented by a set of overall

performance maps normalized to design point values.
Baseline performance maps provide normalized turbine

inlet flow and normalized enthalpy drop parameters as a

function of normalized pressure ratio and normalized

inlet-corrected spool speed. Cooling bleed flow for the
turbine is assumed to reenter the cycle at the turbine

discharge, although a portion of the bleed flow is
assumed to do turbine work.

The normalized turbine inlet flow parameter value is

obtained from the turbine performance map.

(Mp) n = fmap (Nc, n' APn) (3-62)

where (Mp) n = Inlet-corrected flow parameter normal-
ized to design point

Nc," = Inlet-corrected spool speed normalized
to design point

Apn = Pressure ratio normalized to design
point

The inlet mass flow rate in the turbine is

Fro,(',' i
"L t.N.P,.,.JJt)

(3-63)

16

where Pin =

Tin =

N =

th d =

Pin, d =

Tin, d =

Nd

Stagnation pressure at turbine inlet

Stagnation temperature at turbine inlet

Spool speed

Design point turbine mass flow rate

Design point stagnation pressure at tur-
bine inlet

Design point stagnation temperature at
turbine inlet

= Design point spool speed

When the normalized inlet flow parameter at the

design point, (Mp) n, is returned from the map, the value
should be exactly 1.0. However, because the map values
are determined by an interpolation routine (see [3],

Appendix C), it may not be exactly 1.0. This error can be

eliminated by introducing a correction coefficient, Wcor,,

which when multiplied by the returned map value will
make the returned map value be exactly 1.0:

l
= (3-64)

Wc ((Mp) n) map@designpt

Placing the correction coefficient into Eq.(3-63) gives
the mass flow rate in the turbine

l-m (Tin," 77(Nt'_'7
= (Mp)nL d LNdPin,d)J L Tin)" Wcorr

(3-65)

The normalized enthalpy drop parameter, (hr) n, is
obtained from the turbine performance map.

(hp) n = fmap (N. n' APn) (3-66)

The enthalpy drop in the turbine, Ah, is found by the

following equation,

r Ah d 7
(3-67)

where Ah d = Design enthalpy drop across turbine

When the normalized enthalpy drop parameter at the

design point (hr) n, is returned from the map, the value
should be exactly 1.0. However, because the map values

are determined by an interpolation routine (see [3],

Appendix C), it may not be exactly 1.0. This error can be

eliminated by introducing a correction coefficient, Hcorr,
which when multiplied by the returned map value will

make the returned map value be exactly 1.0,

(3-68)
1

Hcorr --

((hp) n) map@designpt

Placing the correction coefficient into Eq.(3-67) gives

r Ah d 7

L"dq" in, dJ

(3-69)

The rate of energy being removed from the working

fluid by the turbine is

Eturb = [thin + (thblee d • bldpct)] Ah (3-70)

where Eturb = Rate of energy being removed from
the working fluid

tit inlet = Mass flow rate of the working fluid at
the turbine inlet

thbleed = Mass flow rate of the cooling bleed-
flow

bldpct = Percentage of bleed flow which does
turbine work

Eturb is the energy flux term for the turbine, and is

referred to as the turbine energy term. It is used to

compute the torque applied to the shaft by the turbine
and is utilized in the energy balance equation given in

the shaft mathematical model. Because the energy

removal process is assumed to take place in the
downstream mixing volume, Eturh is the rate of energy

being removed from the working fluid in the mixing

volume, and is given by the 8Q/dt term in the mixing

volume dynamic energy equation (the 8 Q/dt term will be

negative). Thus, Eturb will be used by the mixing volume

to account for the energy removed by the turbine from

the working fluid.

17

4.0 TESS Operating Paradigm
The sequence of computational steps used to

simulate the propulsion system is termed the

simulation's operating paradigm. The TESS operating

paradigm was derived from the DIGTEM turbofan engine

simulation code [9], and consists of four steps:

1. Establish the engine system configuration. Since

the engine configuration in TESS is user-defined
it is not known until the simulation is started, and

can only be determined after the simulation has

begun. (Note: This step is implicit in the DIGTEM

code because that code uses a static engine

configuration.)
2. Correction coefficients are evaluated, based on

user defined design-point data, to balance the

engine at the design-point.

3. The steady-state (balanced) engine at the user-

defined initial operating point conditions is
determined.

4. The transient simulation is then begun from the

converged steady-state conditions just calculated.
Based on user-defined open-loop transient

control schedules in the compressor, combustor,

nozzle and environment components, the

transient is run through the user-defined time

range.

In this Section, the operating paradigm will be

discussed in detail in preparation for the discussion of

how it is implemented within the AVS system which is
covered in Section 5.

4.1 Applying the Governing Equations
The traditional approach to building a simulation

system is to reduce the problem to a set of coupled

differential equations

dx
dt f(x(t),t)

subject to initial conditions

x(t=o) = g

where x is a vector containing the time dependent

state variables for the system. The system of equations

is then solved using numerical techniques.

This approach was the fundamental approach used in
TESS. As shown in Section 3, differential equations in

the duct, mixing volume and shaft components of the

propulsion system are used to represent the

conservative laws of energy and mass. Once an engine

system has been established by the user, the differential

equations for each of the duct, mixing volume and shaft

components are used to form the system of differential

equations for the system as described above. The

number of equations in the system is not fixed, but rather

is arbitrary and completely dependent on the number of

duct, mixing volume and shaft components within the

engine model which the user has constructed. The

system of differential equations describing the engine

system are then used to determine the steady state

conditions of the engine and to determine the engine

conditions at during a transient analysis.
At the steady-state engine condition, the conservative

laws are satisfied and there is no change in the state

values with respect to time (i.e., the derivative values, dx/

dt, are zero). Thus, for steady-state, the system of

equations being solved is

dx
dt f(x (t), t) 0

In the transient analysis, x is a vector containing time-

dependent state variable. The differential equations are
evaluated to determine the values of the derivative

terms, dx/dt, which are then used to compute the state

variables, x, at the end of some discrete time step. This

process is repeated throughout the transient time
domain.

4.1.1 The Components Execution
Sequence

In order to determine the steady-state balanced

engine, or perform a transient analysis, the differential

equations used by the shaft, duct, and mixing volumes,
must be evaluated. These, however, cannot be evaluated

directly as they are dependent on data computed by
other components in the system. This input data needed

by the shaft, duct, and mixing volumes, must be

determined prior to applying the differential equations in

these components.

Due to the methods used to apply the equations

governing the operations of each of the engine

components, there is a specific sequence of execution

for the engine components. This sequence is comprised

of the following seven steps.
Step 1 - The stored mass I and temperature at the

physical component boundaries are set. As described in
Section 3, the boundaries between the physical

components are modeled by the intercomponent

volumes (mixing volumes). Also, the spool speed in the

shaft components, and the mass flow rate in the duct

components are set. These values are considered
"known" values, either as initial guesses, or as having

been solved for numerically.

Step 2 - The pressure at the boundaries between the

1. The userdoesnot actuallyspecifythe storedmass as a design
pointor initialoperatingpointvalue. Instead,the temperature,pres-
sureandvolumearespecifiedinthemixingvolume.These are used
inthe idealgas lawto givethe storedmass ofthe mixingvolume.
Asidefromthe initialcomputation,inwhichthe pressurehas been
definedby the user,the storedmass, temperature,and volumeare
usedtodeterminethe pressure (see step2). Storedmassis usedas
the independentvadableinsteadofpressurebecausethe continuity
equation is usedto solveforthe derivative o! storedmassin the mix-
ingvolume.

18

physicalcomponents(in the mixingvolumes)are
computed.Thevaluesof temperature,storedmass
(definedinStep1)andtheuser-definedvalueofvolume
(aconstant),areusedwiththeidealgaslawtosolvefor
thepressure.

Step 3 - All physical engine components which are

associated with the flow of the working fluid through the

engine (bleed, combustor, compressor, nozzle, turbine) 2

compute their mass flow rates. Mass flow rate in the

physical components is determined from either one-

dimensional flow equations (bleed, combustor, nozzle),

or from empirical data performance maps (compressor,

turbine). In each case, the values of temperature and

pressure at the component boundaries (and spool speed

in rotating components), which were defined in Step 1,
are used to determine the mass flow.

Step 4 - All components in the engine compute the

fuel-air ratio, f/a, of the flow in the component (obviously,
those components which do not deal with fluid flow, such

as the shaft component, will not compute a value for f/a).

The f/a ratio of the working fluid is needed, along with the
temperature, to compute the enthalpy of the fluid. The

fuel-air ratio in a component is dependent on the f/a and

mass flow rate of the fluid entering the component at its

inlet boundary and on whether the component adds fuel

to the fluid flow (e.g., a combustor component).

The fact that the fuel-air ratio of a component is

dependent on properties of the flow entering at its inlet is

significant because it requires that before a component

can compute its f/a value, those component(s) which

pass fluid into the component must already have
computed their values of mass flow rate and f/a. This is

illustrated in Figure 4.1. Consider engine components
C1, C2, and C3. C1 and C2 are components which pass

the working fluid into C3. Components C1 and C2 must

have already determined their f/a and mass flow rate

values prior to C3 attempting to compute its f/a value as
C3 needs that information to compute its own fuel-air

ratio. This requires that when computing the f/a in each

of the components in the system, the components must

determine their f/a in a sequential order following the

direction of the fluid flow through the engine.

Step 5 - All flow components compute the enthalpy of

the working fJuid. Enthalpy is determined from curve-fit
data based on values of temperature and fla.

Temperature was defined in Step 1 and f/a defined in

Step 4.

Step 6 - Compute energy terms in some components.

Compressor, combustor, and turbine each compute

energy terms (see Section 3). To compute the

compressor energy terms, the f/a and enthalpy of the

fluid entering the compressor and the temperature at the

2. Althoughthe duct componentis considered a physical engine
component, it is omitted from this list because it does not compute
itsmassflow rate. Mass flow rate is the independent(state) vadable
in the differential equation for the duct, and as such isdetermined
numerically by the equation solver

compressor exit, must be known. These were computed

in Steps 1,4, and 5, respectively. The combustor energy
term is dependent only on the fuel mass flow rate, which

is a user-defined value and is always known. The turbine

energy term is dependent on the mass flow rates of the

flow into the turbine and the bleed component flow which

is used to cool the turbine blades. This requires that the
bleed mass flow rate used to cool the turbine be

determined prior to computing the turbine energy term.

Step 7 - All information necessary to evaluate the

differential equations has been computed in the

preceding Steps. The shaft, duct and mixing volume

components can now compute the derivatives of spool

speed, mass flow rate, temperature and stored mass.

ol I Io21

! j

I'h, f/a

Figure 4.1 - Passing the Values of Fuel-air Ratio and
Mass Flow Rate

4.1.2 "Running the Engine"
When performing an engine transient or attempting to

balance the engine at the initial operating point, the

differential equations used to describe the dynamics of

the engine must be computed. As stated above, in order

to correctly compute the fuel-air ratio, the engine

components must execute in sequential order in the

direction of working fluid flow through the engine.

Furthermore, using this sequential execution, it is

possible to combine several of the operational steps
described above. If the sequence is followed, it is

possible to combine Steps 3, 4, 5, and 6 into a single

computational step. If each component executes,

computing its mass flow rate, f/a, enthalpy and energy

terms, in a sequential order following the direction of the

fluid flow through the engine, the information will be

correct. This is illustrated in Figure 4.2. Consider engine
components C4, C5, and C6. C4 and C5 are

components which pass the working fluid into C6.

Components C4 and C5 have already determined their

mass flow rate, f/a, enthalpy and energy values prior to

C6 attempting to compute its mass flow rate, f/a,

enthalpy and energy value. Thus, when C6 executes, it

will have the data necessary to carry out its

computations correctly.

19

ol I Io21

I]

Ua, energy

Figure 4.2 - Combined Computational Steps 3, 4, 5, and
6

The seven steps described above can be reduced to
three sequential execution of components which is
termed a pass through the engine.

Pass 1 - Based on known values of temperature and

stored mass in each of the mixing volumes in the engine,
the pressure in the mixing volume is computed (see
Section 3, Intercomponent volumes). This step provides

the temperature and pressure at the boundaries of the
physical engine components.

Pass 2 - All engine components compute the f/a and

enthalpy of the working fluid within the component. This
must be done in the direction of fluid flow propagation in

the engine, as the f/a ratio of a component is dependent
on the flow into the component from the upstream
module(s). Thus, the execution will follow the flow path
lines from the first component to the last. Since
mechanical components (shafts) don't deal with flow,

they do not execute at this time.
Physical components, in addition to computing f/a and

enthalpy of the working fluid, compute their mass flow
rate excluding ducts for which the mass flow rate is a
known value. Turbine and compressor components use

steady-state performance maps to compute mass flow
rate, using the known value of shaft speed, and the
pressure and temperature at the physical component's
boundaries provided by the mixing volumes as described
in Pass 1. Other components use one-dimensional,
isentropic relationships to determine the mass flow rate
also based on the pressure and temperature at the

physical component's boundaries.
Some physical components (compressor, turbine,

combustor) compute energy terms at this time. These
terms are used by other engine components to compute
the differential equations (see Section 3) which are used

to define the system.
Pass 3 The mixing volume, shaft and duct

components generate their respective derivative values.
The order of execution is not specific in this step as the
needed information has already been computed in the

previous steps.
Mixing volumes compute the derivatives of the state

values of stored mass and temperature by applying the
conservation of mass and energy equations to the flow in

the mixing volume component. The values of mass flow
rate, enthalpy and energy source terms from each of the
upstream physical components and the mass flow rate
out of the mixing volume, which is the sum of the mass
flow rates in the physical components at the mixing
volume's exit boundary, are used to compute the
derivative values. The shaft components compute the
derivatives of the state value of spool speed after

obtaining the energy terms (computed in Pass 2) from
the compressor and turbine components which are
attached at the shaft components interfaces. The duct
components compute the derivative of the state value of
mass flow rate based on the pressure and temperature
at the component boundaries. These values are
provided by the mixing volumes at the boundaries.

These three passes through the engine are
collectively known as running the engine, as now all of
the components have computed all necessary
information about the state of the engine.

4.2 Computing Correction Coefficients

The second step in the TESS Operation Paradigm is
the determination of the Correction Coefficients. It is

assumed that the design values for each component in

the system are available, and furthermore, that those
values result in a balanced system. If for some reason
(either because of poor input data or numerical
inaccuracies in the computation), the design point data
does not result in a balanced engine, correction

coefficients are computed which cause the engine to be
balanced at the steady-state design point. These values
are then used in the governing equations for both on-
design and off-design point operation.

The process of determining the correction coefficients
is similar to running the engine, with the following

exceptions:
• The design point values of temperature and pres-

sure in the mixing volumes are already known, hav-

ing been defined by the user. Thus, it is not
necessary to do the operations stated in Pass 1.

• It is not necessary to evaluate the differential equa-
tions in Pass 3, as the derivative values are not

needed to compute the correction coefficients.

Thus, only the computations carried out in Pass 2 are
required. Once the necessary values are computed, they
are compared with the user-defined design point values
to determine the correction coefficients.

4.3 Determining Steady-State Engine
Balance

Before proceeding to the transient analysis, TESS first
determines the steady-state, balanced engine conditions
at the initial operating point. As described above, the

system is considered to be balanced at steady-state
when the state variables for the system (contained in the

x vector) are no longer changing with time:

20

dx
d--t = f(x ((t), t)) = 0

The state variable values at the initial operating point
are input data which is supplied by the user. These are
the initial operating point values of temperature and
pressure in the mixing volumes, spool speed in the
shafts and mass flow rate in the physical components.
The state variable values defined by the user are then
used to run the engine and determine the derivative
values. If all of the derivatives are within a user-defined

tolerance value of zero, the system is considered to be
balanced at the initial operating point. If, however, the
derivatives are not near enough to zero, a numerical

balancing routine is applied to determine the state values
for the system which force the derivatives to zero. TESS

currently utilizes two numerical techniques to achieve
steady-state balance of the engine: the Newton-
Raphson method and a Fourth-order Runge-Kutta
method. These methods and their implementation in
TESS are described in Appendix B of [4].

4.4 Transient Engine Analysis
Once the engine has been balanced at the initial

operating point, the transient analysis may begin. As
described above, the system of differential equations

dx
-- = f(x (t), t)
dt

are evaluated to determine the derivative values, dx/dt,

which are then used to compute the state variables, x, at
the end of some discrete time step. In the transient, the

engine is run, in time, away from its initial operating point
by using open-loop engine controls (e.g, combustor fuel
flow rate). These controls, which are defined by the user

using transient control schedules (see Figure 4.3),
provide linear, parametric control of certain engine
variables. (See Appendix D of [4] for more information).
The simulation is continued until the user-defined
transient end time is reached.

TESS currently includes four numerical methods for
solving the system of equations during the transient:
Improved Euler, Fourth-order Runge-Kutta, Adams, and
Gears method. The latter two are part of a ordinary
differential equation solver package developed by
Livermore Laboratories (see Appendix B of [4] for more

information).

Parameter
Value

Initial __Operating
Point

h.==

Time

Figure 4.3 - Graphical representation of Transient
Control Schedule

21

5.0 Implementation of Operating
Paradigm Within AVS Framework

In this Section, the methods of implementing the
propulsion system analysis code operating paradigm
(described in Section 4) within the graphical user
interface provided by AVS is discussed. Two possible
techniques to implement the AVS system as the
Graphical User Interface (GUI) for the engine code were
considered.

In the first case, AVS would be used only as a

graphical pre/post processor to the propulsion system
analysis code. The propulsion system analysis code
would exist as a separate code hidden from the user
beneath the GUI. The user would use the AVS graphical
interface to define the engine system and input data for
the components in the model. That data would then be
sent to the propulsion system analysis code, and the
simulation would be executed. Any output from the code
would be made available to the AVS system to provide
the user with a graphical representation of the output
data.

This approach is a traditional method used to make
batch engine codes easier to operate. However, to
provide for arbitrary engine configurations, the engine
analysis code must be capable of handling multiple
instantiations of component objects and encapsulating
the data for each object. This can be handled in a
number of different ways. The most efficient is to use of
an object-oriented programming language which by its
very nature provides the capability for creating multiple
instances of an object which encapsulate their data.
Another method is to put each instance of an object in a
separate UNIX process. A third, less elegant and more
complex method, as far as programming, is a code
translator. In this method, a program uses the input data
and engine configuration provided by the GUI to write a
code which reflects that engine system model. Objects
are instanced by creating copies of their programming
code in different subroutines (see reference 12) into a
file. The file is then compiled into an executable file

which may later be executed.
In the second technique for implementing the AVS

system as the GUI for the propulsion system analysis
code, the engine analysis code is integrated with the
AVS system. The propulsion system analysis code and
the GUI provided by AVS are coupled so that the

operation of each of the codes interacts with the other.
The engine analysis code for each component object is
placed within an AVS module along with the code
necessary to allow it to function within AVS. The user
utilizes the AVS graphical interface to define the engine
system and input data for the components in the model.
Data input from the user to the engine code and data
output from the engine code to the user is fully integrated
with the graphical tools provided by AVS.

Because the AVS system creates instances of objects
which run within separate processes, it provides, by

design, the capability of creating multiple instances of an
object which encapsulate their data. There is no need to

use an object-oriented language - the relatively more
common non-object-oriented languages of FORTRAN
and C may be used; and, there is no need to employ a
code translator. For this reason, the second technique,

utilizing full integration of the propulsion system code
within AVS, was used in developing TESS.

However, because the engine code is fully integrated
within AVS, which does not provide complete control
over all aspects of its operation, this creates difficulties in
implementing the operating paradigm of the propulsion
system analysis code. This includes difficulties in the
areas of:

• Scheduling module execution
• Passing messages to modules
• Determining how the system is connected
° Integrating data among several modules

The solutions to these problems are discussed in this
Section.

5.1 System Execution Control
One of the more difficult aspects of integrating the

propulsion system analysis code within the framework of
the AVS system was the inability to explicitly control
execution of the AVS modules within the engine network
according to the operating paradigm. As described in
Section 2, AVS was developed primarily to take data,
manipulate them and render them visually to the screen.
In most image processing applications, the data are
created and then manipulated in a sequential order to

generate output data which is displayed. This type of
process generally requires that data flow from top to
bottom (see Figure 5.1). Once the first module (i.e. the
one at the top of the Workspace) in the network has
executed, each downstream module will execute
successively as it receives new input data from the

upstream module.

Figure 5.1 - Flow of Data in an AVS Visualization
Application

However, if an application requires that certain
modules execute prior to other modules and they are not
connected in sequence, a problem exists. This is a

22

feature inherent in modeling turbine systems. Consider

the core section of a gas-turbine propulsion system as

shown in Figure 5.2.

turbine

Figure 5.2 - Representation of Turbine Propulsion

System Core Section

In the mathematical model representing compressor-

shaft-turbine assembly, which is known as the spool, the

differential form of the energy conservation balance for

the spool is (Eq. 3-61):

dN (30"_2J 1 _Ed-;"=,,+ (E,....

To evaluate this equation requires that the

compressor energy term (Ec,,np) and the turbine energy
term (Eturh) be known. These values can only be known if
the compressor module and turbine module both

execute prior to the shaft module. However, in the AVS

system shown in Figure 5.2, the modules will execute in

the following sequence: compressor first, then the

combustor 1, shaft and finally the turbine. Clearly, when

the shaft component computed the derivative value of

the spool speed (dN/dt), the result would be erroneous,

as the turbine energy term would not yet be computed.

For developing a propulsion system simulator in which

the engine configuration being modeled is static, it is not

difficult to write a simulation program so that engine

1. The order of execution for the shaft and combustor modules is as
follows: Once the compressor has finished executing, the combustor
and shaft would receive new input data from the compressor. The
AVS Flow Executive would then schedule them both to execute. The
order of execution is dependent on the positionof the modules inthe
Workspace. As stated above, module execution is from the lop-
down in sequence along the data connecting line(s). For modules
which have a common upstream module, the module which is
nearer the top of the Workspace will generally execute first. In this
case, it would be the combustor. It may also be noticed that il the
shaft finished operating prior to the combustor, the turbine could
possibly begin operating as its input (from the shaft) would have
been changed. Thus, the turbine would execute without the data
from the combustor an produce erroneous results. This possibility is
discussed in section 5.2.1

computations occur in the correct order. For the above

example, it would be very easy to, say, call the

compressor and turbine subroutines to compute their

respective energy terms before calling the shaft

subroutine to compute the speed derivative.

For a propulsion system simulator in which the engine

configuration is not known until the simulation begins
executing, the solution is not quite as simple. For the

simulation to execute properly, it is necessary that some
controller exist which can direct the simulation by

executing the correct code at the appropriate time.

Furthermore, in a simulation where the components in

the engine are treated as generic objects, there will

possibly exist multiple instances of an engine
component. Each instance of an object will have the

same code and operate identically, but will have different
data associated with it.

A relatively simple solution to the problems

encountered in a dynamic system simulation with

multiple instances is to use an object-oriented

programming (OOP) language. This would allow multiple

instances of common pieces of code (objects) and

provides the ability to schedule the execution of code

correctly. One of the reasons for using AVS was that it

allowed having multiple copies of pieces of code (much
like multiple instances of objects in an OOP code)

without using an object oriented code. Unlike an OOP

language, however, with AVS there is no convenient

method to pass messages to a specific module and

direct it to perform the required operation. For example,

in an OOP language, the system controller could send a

message to the instance of the compressor object called

LPC, telling it to compute the mass flow rate and return

that value simply by executing a message such as LPC

getmassflow. Using AVS it is not possible to send such a

simple message directly.

In lieu of being able to pass messages directly to
modules within AVS, a different approach was applied to

the problem. Instead of a calling routine directing an
object to perform a certain function, each of the engine

component modules are designed to perform certain

computational operations when directed by a system

controller module (SYSTEM). The difference being that

the SYSTEM module will send a message to perform
some function to the entire network of modules. Those

modules which are programmed to respond to the

message sent by the SYSTEM module will do so, and
those which are not designed to respond to the message

will simply ignore the message. In this way, the modules

themselves have some built in intelligence about when to

execute, and the system controller simply sends the

correct messages in the order as determined by the

operating paradigm described in Section 4.

The advantage of this scheme is that it utilizes the

way in which AVS was designed to operate. If the

message from the SYSTEM module is sent along the

connecting wires connecting each module, then all
modules in the network will receive the message.

Utilizing a coroutine module as the system controller

23

module provides the ability to send a message to the
network and then wait until all of the modules in the

network have responded to that message. 2

5.1.1 TESS Message Passing Under
AVS

The problem of sending messages to the various
objects in the system in the correct sequence was solved

by creating a system controller object which passed
integer values to all of the modules in the system.
However, there still existed a problem of sending the
actual messages. It was decided to use integer values to
represent the message being sent to the engine
network.3 The integer values do not represent a single
message, but rather are used to trigger a set of
computations in certain engine components. The system
controller module (SYSTEM) sends an integer value
(which is contained in the NSYS variable) to each
module in the network, to control the sequence of

operations in the simulation. Different NSYS values are
sent depending on what function is need to be
performed. Each type of module (compressor, turbine,
duct, etc.) responds to the different NSYS values
according to its specific programming. In this way it is
possible to control which modules execute, in what order
they execute, and what function they perform.

This method, while not object-oriented, retains the
object-oriented concept of encapsulation. The module
still remains a "black-box" which responds to messages
sent to it and returns the desired values. The difference
now is that instead of text-base messages, the

messages are in the form of integer numbers.

5.2 Operating Paradigm
Implementation Under AVS

The operating paradigm used by TESS was described
in Section 4. The following sections describe how the

various engine operations are controlled through the
passing of the various messages (NSYS values) to the
engine network. Table 5.1 lists the NSYS values used to
control engine operation in the TESS modules and a
short description of the corresponding engine operation.

NSYS
Values Engine Operation

0 Establish Data Struct Pointers

1 List All Engine Components

2 Define Design Pt Data to the System

3 Compute Correction Coefficients (except
shaft)

4 Compute Shaft Correction Coefficients

5 Third part of Pass through the Engine

6 Second part of Pass through the Engine

7 First part of Pass through the Engine

8 Define Operating Pt Data to the System

9 Determine Upstream Components

10 Define Operating Pt Data to the System

Table 5.1 - NSYS Values and Engine Operations

was how to determine the connectivity between engine

component modules (i.e. how the engine component
modules are connected to one another). This information
was needed because engine components must be able
to access information computed by other engine

components. For example, in order for the shaft module
to apply an energy balance, it must determine the energy
terms from the compressor and turbine which are
attached to the shaft. This requires that the shaft "know"
to which compressor and turbine component it is
connected

An obvious method to determine the connectivity of

the engine model would be to have the user use the
mouse pointer on the display screen to "draw" lines
between the modules, (see Figure 5.3). These lines

would indicate either physical connections (such as
between a shaft and a compressor), or paths of fluid flow

(such as between a compressor and combustor)
between engine components. Once drawn, the lines
would establish which module is connected to which

other module and the system would be defined.

5.2.1 Engine System Connectivity

(NSYS values 0, 1, and 9)
One of the more difficult aspects of utilizing AVS to

control the graphical construction of an engine model

2. A module executes even if the message the SYSTEM module has
sent is one which the module does not respond to. This is necessary

to ensure that the data being sent along the connecting wires is

available to the next module in the system. If the module did not exe-

cute, the downstream modules would have no input data and the

simulation would be disrupted.

3. Text strings could have been used as the message format. In an

earlier development phase of TESS, only integers were being

passed between modules, so integers were used as the message
format.

[Compressor_'-_ Combustor _ Turbine

"_ Shaft _ "/'/

Figure 5.3 - Connecting Lines Between Components

In most graphical user interfaces, the process of
drawing the lines would involve having the user use a

24

mouse pointer to select modules to be connected. The

location of the modules selected by the mouse pointer on
the screen would be determined by the windowing
system. This information could then be compared to the
known location of each of the engine component objects
on the screen, to determine which of the objects the user
had selected. In this way, the selected module and the
modules it was connected to could be established and a

connecting line could be drawn.
In AVS, the above process is also used: modules on

the screen are connected by selecting a module with the
mouse pointer and "dragging" the pointer to the module
to be connected. This causes a line to be drawn between

the modules to show that they are connected.
Unfortunately, the information used to draw the line is not

accessible by the user or the programmer, as it is hidden
within the AVS software. Thus, it is not possible to
determine which modules have been selected and how

they are connected 4. Another approach, which takes
advantage of AVS's operational characteristics, was

used instead to determine the system connectivity. The
connectivity of a engine model can be defined by three
sets of information: 1) a list of each of the components in
the simulation, 2) for each component in the system, a
list of the components which are connected to its input
ports (i.e., it's upstream components), and 3) for each
component in the system, a list of the components which
are connected to its output ports (i.e., it's downstream
components). The process of obtaining this information
involves directing each component to perform specific
actions by sending each component a series of NSYS
values as described below.

NSYS value of 0 - Once an engine model has been
configured (see Figure 5.4 for an example network), and
the user begins the simulation, the SYSTEM module
immediately begins running and sends an NSYS value of
0 to the network. This is necessary to allow the data
passing mechanism to initialize itself. Within each
module, AVS utilizes integer pointers to return the
address of the data struct within memory for each of the
input and output ports on the module. Without this, it is
possible that some modules would return null pointers
which would cause errors in the initialization process.
The NSYS value of 0 is used since this value triggers no
action in any of the modules.

NSYS value of 1 - Upon completion of execution of
each module in the network, the SYSTEM module then
opens the file comp.list.no.This file, when completed, will
contain a list of all the components in the network
(except the SYSTEM-END module). The SYSTEM
module is always the first module to list itself in
cornp.list.noand lists the following: its component number
(always 1), component name (system), component type
(syst), component code (00), and solver flag (0). These
terms are described below:

4. It is now possible to determine the connectivity of the modules

using the AVS Command Language Interlace using the net_show

command. At the time TESS was developed, this option was not

available and thus was not implemented.

• The component number is a unique number which
identifies each of the components connected in the
network.

= The component name is a unique, user-defined,
character label (10 characters maximum). It is used

to distinguish multiple instances of a module (e.g. to
distinguish between the high and low pressure tur-
bines, they could be given the name HPT and LPT,
respectively).

• The component type is a four character label used to
identify a module's type.

= The component code is a 4 digit integer value also
used to identify a module's type.

• The solver flag defines whether the component gen-
erates derivative terms. Zero (0) is false, one (1) is
true. Mixing volume, shaft, and duct modules gener-
ate derivative terms so their solver flag value is 1; all
other modules are zero. (See Figure 5.5).

After SYSTEM has completed writing to comp.list.no, it
sends an NSYS value of 1 to the network. Each module

in the network then responds with the following action:

1. It reads the file comp.lJst.no to determine the number
of components already listed in the file.

2. Upon reaching the end of the file, the component
determines its component number and appends its

component number, name, type, and code to the
comp.list.no file.

rmzzle

SYSTEM END

Figure 5.4 - Example Propulsion System Network

25

Forexample,if theDUCTcomponentshowninthe
examplenetworkof Figure 5.4, was executing in
response to an NSYS value of 1, it would read the
comp.list.no file to determine its component number.
Figure 5.6 shows what comp.list.no would look like at that
time. DUCT would determine that ten of the components
in the network had already executed and listed
themselves in comp.list.no, therefore the DUCT
component number would be 11. It would then write it's
component number (11), name (duct), type (duct),
component code (77) and solver code flag (1) in the file.

MODULE TYPE CODE FLAG

System syst 0 0

Environment envr 11 0

Compressor comp 22 0

Mixing Volume mxvl 33 1

Combustor comb 44 0

Shaft shft 55 1

Turbine turb 66 0

Duct duct 77 1

Bleed bled 88 0

Nozzle nozz 101 0

Figure 5.5 - TESS Module Types and Codes

3. The component sets the value of its component
number to the variable NCOMP which is a static

variable and will be retained by the module after it
has completed executing.

4. The component sends the NSYS value of 1 to the
downstream component.

After the network has completed executing, the
comp.list.no file contains a description of each module in
the network as shown in Figure 5.7.

NSYS value of 9 - Next, the SYSTEM module opens
the file comp.list.upand writes a header to the file. This
file, when completed, will contain a list of the upstream
component(s) connected to each of the components in
the network (except the SYSTEM-END module). The
SYSTEM component then sets the NAUXVAL variable
equal to its component number (which is always 1).
SYSTEM then sends an NSYS value of 9 to the network

to which each module in the network responds with the

following action:
1. It receives input data from the upstream module(s)

and extracts the component number of the

upstream component from the NAUXVAL variable.
The component number, name, type, and upstream
component number are appended to the
comp.list.up file. If the component has multiple
inputs, input is checked for each of its upstream
components and they are also appended to the
comp.list.up file.

COME COME COME COME

NO. NAME TYPE CODE

1 system syst 0

2 environ envr 11

3 hpc comp 22

4 hss shft 55

5 mv_3 mxvl 33

6 hp_bleed bid 88

7 burner comb 44

8 mv_4 mxvl 33

9 hpt turb 66

10 mv_5 mxvI 33

FLAG

Figure 5.6 - Contents Of comp.list.no file As Read By
DUCT Component

COME COME COME COME

NO. NAME TYPE CODE

1 system syst 0

2 environ envr 11

3 hpc comp 22

4 hss shft 55

5 mv_3 mxvl 33

6 hp_bleed bid 88

7 burner comb 44

8 mv_4 mxvl 33

9 hpt turb 66

10 mv_5 mxvl 33

11 duct duct 77

12 my__6 mxvl 33

13 nozzle nozz 101

FLAG

Figure 5.7 - Contents of comp.list.no File After
Completion

For example, if the DUCT component shown in the
example network, was executing in response to an
NSYS value of 9, itwould extract the component number

of the upstream component (which in this case is 10 - the
component number of the MV_6 component). It would
then write it's component number (11), name (duct), type
(duct), and the upstream component number (10) in the
file. Figure 5.8 shows what the comp.list.up file would
look like after this was completed.

2. The component sets the vatue of its upstream com-
ponent number to the variable NCOMPUP which is
a static variable and will be retained by the module
after it has completed executing. If the component

26

has multiple inputs the values of the upstream com-

ponent numbers are stored in the NCOMPUP array

which is a static array and will be retained by the

module after it has completed executing.

3. The component sets the NAUXVAL value to its

component number and sends it to the downstream

component(s). Once the comp.list.no and

comp.list.up files have been established, the SYS-

TEM module opens the file comp.list.dn and writes a

header to the file. For each component listed in

comp.list.no, the comp.list.up file is searched for any

components having the same upstream component
number. 5 These are then appended to the

comp.list.dn file. This file, then contains a list of the

downstream component(s) connected to each of

the components in the network (except the SYS-

TEM-END module). Figure 5.9 shows the com-

pleted comp.].ist.dn file for the example network.

The connectivity of the engine network is now defined.

By using these three files, the upstream and downstream

components of any component in the network may be
determined.

COME COME COME UPSTREAM

NO. NAME TYPE COME

2 environ envr 1

hpc comp

4 hss shft 3

5 mv_3 mxvl 3

6 hp_bleed bid 5

7 burner comb 5

8 mv_4 mxvl 7

9 hpt turb 8

9 hpt turb 4

10 mv_5 mxvl 6

11 duct duct 10

Figure 5.8 - Contents of comp.list.up file After DUCT

Component Has Executed

5.2.2 Initializing System with Design

Point Data (NSYS value 2)

The next step in the operating paradigm is calculation

of the corrections coefficients for the engine model.

Before computing these values, however, the user-

defined design point data must be available throughout

the system. Each component in the network, in response

to a NSYS value of 2 sent by the SYSTEM module,

5. The process of determining the downstream component list
comp.list.dn is done entirely by the SYSTEM module; there are no
NSYS values sent to the network to perform this task

writes its design point values to the data arrays

corresponding to the component, which are then passed

to the downstream components. This is necessary
because other components must be able to access the

design point values of adjacent components. For

example, a compressor component must have the

design values of pressure at its boundaries in order to

compute its temperature correction coefficient (TCORR).

This information is provided by the mixing volume

components connected both upstream and downstream
of the compressor.

5.2.3 Computing Correction

Coefficients (NSYS values 3 and 4)
The SYSTEM module then sends a NSYS value of 3

to the network. All components except the shaft

components now compute their correction coefficients. 6

As described above, the shaft component requires input

data from the compressor and turbine, and because the

modules in the network will operate sequentially, the

shaft would normally operate before the turbine. Thus,
the shaft must be made to wait until the turbine has

executed and therefore, does not respond to a NSYS
value of 3.

COME

NO.

1

2

3

3

4

5

5

6

7

8

9

10

11

12

COME DWNSTRM DWNSTRM DWNSTRM

NAME NO. COME COME

system 2 environ 11

environ 3 hpc 22

hpc 4 hss 55

hpc 5 mv_3 33

hss 9 hpt 66

mv_3 6 hp_bleed 88

mv_3 7 burner 44

hp_bleed 10 mv_5 33

burner 8 mv_4 33

my_4 9 hpt 66

hpt 10 mv_5 33

mv_5 11 duct 77

duct 12 mv_6 33

mv_6 13 nozzle 101

Figure 5.9 - Contents of Completed comp.list.dn File

After all components have responded to the NSYS
value of 3, the SYSTEM module sends an NSYS value

of 4 to the network. All shaft components now compute
their correction coefficients.

6. Not all componentscomputecorrectioncoefficients. Those which
do not compute correctioncoefficients still respond to the NSYS
value of 3 and perform other necessary calculations. See Section 6
for a description of how each module responds to this message

27

5.2.4 Initializing System with Initial
Operating Point Data (NSYS values 10
and 8)

The next step in the operating paradigm is balancing
of the engine to steady-state conditions at the initial
operating point. Before beginning the balancing,
however, the user-defined initial operating point data
must be defined throughout the system. This is achieved
in two steps. In the first step, mixing volume and shaft
components in the network, in response to a NSYS value
of 10 sent by the SYSTEM module, write their initial
operating point values to the data arrays corresponding
to the component, which are then passed to the
downstream components.

In the second step, the SYSTEM module sends an
NSYS value of 8 to the network. Each of the components
in the network then respond by computing the initial
operating point values of mass flow rate and fuel-air
ratio.

5.2.5 "Running The Engine" (NSYS
values 7, 5, and 6)

With the preceding steps completed, the system is
now fully defined at the initial operating point. The next
step in the operating paradigm is to determine if these
initial conditions reflect a balanced engine condition. In
order to determine if the engine is balanced, the
differential equations used to model the mixing volume,
shaft, and duct are evaluated. If all derivative values are
(nearly) zero, then the engine is balanced.

As described in Section 4, to determine the derivative

values, the engine is "run". This process is comprised of
three passes through the engine. These passes are
implemented by having the SYSTEM module send three
NSYS values to the network in order to determine the

derivatives. The NSYS values of 7, 5, and 6 are sent to
the network to perform the computations as described in
Passes 1, 2, and 3, respectively.

In response to an NSYS value of 7, mixing volume
components compute the pressure in their control
volume based on known values of temperature and
stored mass. At this time, the mass flow rate in any bleed
components is also computed. As described in Section
4, computation of mass flow rates is performed on Pass
2. However, this departure from the operating paradigm

is required in order to properly implement the bleed-
cooled turbine components within AVS. To better explain
this need, consider the network shown in Figure 5.10.

Cooling bleed flow for the turbine reenters the cycle in
the mixing volume at the turbine exit. Because the bleed
flow goes into the mixing volume below the turbine, the
turbine and bleed components will be in parallel flow
paths. Thus, because of the operational characteristics
of module execution under AVS, the turbine may
execute, before the bleed has computed its mass flow

rate. In order to correctly compute the turbine energy
term, the turbine module must be able to get the correct
bleed mass flow rate value. This problem is solved by

running the bleed at the same time the pressures in the
mixing volumes are computed. Because the bleed
component only requires that its input boundary values
be defined in order to compute mass flow rate, it is only
necessary that the mixing volume upstream of the bleed
execute prior to the bleed. Since it is necessary that
components execute in sequence in the direction of fluid
flow propagation, this requirement is always satisfied.

vlBhill]le

Figure 5.10 - Bleed-cooled Turbine Implementation

In response to an NSYS value of 5, all engine
components compute the f/a and enthalpy of the working
fluid within the component. Physical components, in
addition to computing f/a and enthalpy of the working
fluid, compute their mass flow rate. Some physical
components (compressor, turbine, combustor) compute
energy terms at this time.

In response to an NSYS value of 6, the mixing
volume, shaft and duct components generate their
respective derivative values.

5.2.6 Balancing Engine to Steady-state
Conditions at Initial Operating Point

The balancing method used to achieve a steady-state
balanced engine is selected by the user. Currently, TESS

provides two iterative numerical methods to determine a
steady-state balanced engine. These methods are the
Newton-Raphson method and the Fourth-order Runge-
Kutta method. At this point in the simulation, the
SYSTEM module calls the appropriate subroutine to
control the process of determining a balanced engine.

The iterative process used by both of these numerical
solvers consists of determining the derivatives of the

system by "running the engine" and then checking to see
if the derivatives have been reduced to zero.- If the

derivatives are not zero, the independent variable in
each differential equation is improved upon, returned to

its respective engine component and the engine is run
again to determine the new derivative values. This
process is repeated until the derivatives are all reduced
to zero.

7. TESS does not actually check if the derivatives have been
reduced to zero but rather uses another value known as the error

value. See Appendix B of [4] for a detailed description on the steady-
state solvers used in TESS and the definition of the error value.

28

Representation Of
Data Struct Associated

With Input Port Of
SYSTEM Module

New State Values Are
Copied Into The Struct
Replacing Old State Values

VS Vector Array
comp. # Derivative

4 AA
5 BB

5 cc
8 DD

8 EE

10 FF

10 GG
11 HH
12 Jt
12 JJ

Component
nsys.
nauxval
time
massflow
fuelflow
temp
press
rpm

enthalpy
strdmass
faratio
energy
volume
massflow_deriv
temp_deriv
rpm_deriv
strdmass_deriv
thrust
vargeom
chkflg

Derivative Values Are
Used By Solver To
Compute New State Values
Which Are Placed In VS Array

1 2 3 4 5 E 7 8 91C1112115

HH

BB DC FF II

CC EE 3G JJ

lh

bb dd ff ii

B8

cc ee gg jj

\
Derivative Values Are
Extracted From Struct Data
And Placed In VDOT Array

Arra
comp. # Derivative

4 aa

5 bb
5 cc
8 dcl

8 ee

10 ff
10 gg

11 hh
12 ii
12 JJ

Figure 5.11 - Extraction and Replacement of VDOT and VS Values

In order to apply this iterative scheme within the

framework of an arbitrary propulsion system simulator

requires that the numerical solver be able to access the

state derivative values computed by the mixing volumes,
shafts and ducts in the engine configuration, and once

new state values have been computed, to place those

values back in the correct engine components. In TESS,

the process of getting the state derivative values from

the engine components is described below.

Once the engine has been "run", the solver must

determine which of the components in the engine

network have compute state derivative values. This is

done by searching the comp.list.no file for components

with a 1 in the solver flag column. For each component

with a 1 in the solver flag column, the solver then uses
the component number to access the data for that

component contained in the data struct associated with

the SYSTEM module's input port. The solver then

checks the component type to determine if the

component is a duct, a shaft, or a mixing volume. If it is a
shaft, the solver accesses the rpm_deriv data array to

get the derivative of the spool speed for that particular
shaft component; if it is a duct, the solver accesses the

massflow_deriv data array to get the derivative of the

mass flow rate for that particular duct component; if it is a

mixing volume, the solver accesses the temp_deriv and

$trdmas$_deriv data arrays to get the derivative of the

temperature and stored mass for that particular mixing

volume component.
The derivative values are extracted from the struct in

the order they are read from the comp.list.no and placed

into the VDOT vector array. This array is then used by

29

the solver to compute new values of the state values
which are placed in the VS vector array. These values
are then placed back in the data struct associated with
the SYSTEM module's input port in the order that they
were extracted. This is done by searching the
¢omp.list.nofile for components with a 1 in the solver flag
column. For each component with a 1 in the solver flag
column, the solver uses the component number to
replace the data for that component with the newly
computed data contained in the VS vector array. If the
component is a shaft, the solver replaces the rpm value
with the new value of rpm for that particular shaft
component; if it is a duct, the solver replaces the
massflow value with the new value of mass flow rate for

that particular duct component; if it is a mixing volume,
the solver replaces the temp and strdmass values with
the new values of temperature and stored mass for that
particular mixing volume component. This process of
extracting the derivative values, solving for the state
values, and replacing them in the data struct is illustrated
in Figure 5.11.

5.2.7 Transient Analysis of Engine
The final step in the operating paradigm is the

transient analysis. This procedure is similar to the
steady-state balancing operation except that the
governing equations now include time as an
independent variable. The differential equations are
integrated numerically to determine the state of the
engine at each time step in the transient.

As with the steady state balancing method, the user
has a choice of numerical methods with which to solve

the set of differential equations. Currently, TESS
provides four iterative numerical methods to determine a
steady-state balanced engine. These methods are:
Fourth-order Runge-Kutta method, Improved Euler
method, Adams-Moulton method and the Gear method.
Depending on the user's selection, the SYSTEM module
calls the appropriate subroutine to control the process of
running the transient.

The iterative process used by all of these numerical
solvers consists of determining the derivatives of the
system by "running the engine" and then using the
derivatives to estimate the state values at the end of

some discrete time step This process is repeated over
the entire user-defined time range.

5.3 Modules With Multiple Input Ports
Modules with more than one input port present certain

difficulties in handling their execution and data passing.

5.3.1 Module Execution Control

For a module which has more than one input port, a
mechanism is needed to control when the module begins
to execute it's computation function. As described in
Section 2, a subroutine module will execute

automatically when its input changes. In a module having

more than one input port it is possible that the module
will execute it's computation function before all of the
input ports have received new input data. The
computation function will then execute using erroneous
input data. To illustrate this, consider the following
portion of a network shown in Figure 5.12.

Figure 5.12- Multiple Input Port Module

Module M1 receives input from some upstream
module and executes, manipulating its input data and
sending output to module M3. Module M2 also receives
input from some upstream module and executes,
manipulating its input data and sending output to M3. If
M1 completes executing before M2, M3 will receive new
input data from M1 before receiving new input data from
M2. M3, in response to new input from M1 will begin
executing before M3 has received the new data from M2.
(Note: despite the fact that M2 has not yet run, there will
still be input data available to the input port. However, it
will be data output from a previous execution of M2, and
thus will possibly be incorrect). M3 will then use old data
previously sent by M2. Thus, the data sent to the
computation function will be incomplete or incorrect and
the output from M3 will likely be in error. To resolve this
problem, a mechanism was developed which would
allow the module to execute its computation function

only when the module had received all of its input data.
Each input port in a TESS module is identified by an

array of integer variable pointers, INDATA(n) (where n is
the number of input ports). Input ports which have not
been connected to another module return an INDATA

value of zero (a NULL pointer). During execution of the
network, each input port is associated with its own set of
input data which can be accessed by the INDATA pointer
associated with that input port. For each input port, the
variable INPUT(n) is set equal to the NSYS value
contained in that input port's data.

INPUT(l) = NSYS for input data accessed by
INDATA(1) pointer.

INPUT(2) = NSYS for input data accessed by
INDATA(2) pointer.

INPUT(n) = NSYS for input data accessed by
INDATA(n) pointer.

3O

In order for a module to execute properly, all of the
data it receives from upstream modules must have been
computed by modules executing in response to the
same NSYS value issued by the SYSTEM module (see
section 5.1.1). Consider the modules given in Figure
5.12. If M1 executes in response to an NSYS value of 3,
M3 will receive input data from M1 which contains the
NSYS value of 3. If M2 has not yet responded to the
NSYS value of 3, the input data for M3 from M2 will be
data generated in response to a previous NSYS value
(which would be NSYS = 2). M3 would only receive all of
its correct input if both M1 and M2 had executed in
response to the NSYS value of 3. M3 would "know" that
both M1 and M2 had both executed in response to NSYS
= 3, by the fact that it would receive and NSYS value of 3
from both of these modules.

Thus, a module may execute when all of the NSYS
values are identical. As stated above, the INPUT(n)
values contain the NSYS values for input data
associated with each input port. So when all of the
INPUT values agree, then all of the NSYS values agree
and the module may execute. The criteria for module
execution may be stated:

• A module having more than one input port may
execute only when all of the INPUT(n) values are
identical

Figure 5.13 - Module Network Connected in Linear
Fashion

5.3.2 Data Integration
As described in Section 2, a struct is used to store the

data which is being shared between connected modules

in a system. For a system where the modules are
connected in linear fashion such as those shown in

Figure 5.13, the transfer of data between modules is
straight-forward, as there is only a single data struct
located between each component.

The data in Struct 1 is copied into module M2
(indicated by the dashed lines), operated on, and copied
to Struct 2. The process is repeated on down the
network. A linear network such as this poses no
problems in updating values in the data struct. However,
if the network diverges into one or more parallel

execution branches which then converge, the module at
the convergent point will have multiple input data sets.
These multiple input data sets will contain both common
and different data which will have to be correctly
integrated into a single data set before it can be copied
into the data struct associated with its output port(s). To
better illustrate this, consider the network shown in
Figure 5.14. The solid lines between modules indicate
the connections which AVS has drawn, and the dotted
lines indicate the connections between modules and the
data structs.

Figure 5.14 - Module Network Connected in Parallel
Fashion.

As can be seen from the figure, the engine network
splits into two parallel branches downstream of module
M1. Modules M2, M3, M4 and M6 are in one branch
while module M5 is in the other. The two branches

converge at module MT. Furthermore, another parallel
branch is formed downstream of M2. Modules M3 and

M4 are in the separate branches and which then
converge at module M6.

To better explain how the data is passed through the
network and how parallel data paths are handled,
consider the following explanation of the execution of
each of the modules in the network. The status of the

data in each of the structs is represented by a table (see
Table 5.2)

Module 1 2 3 4 5 6 7

Updated X X X X

Table 5.2 - Representation of Data Struct

This table indicates whether a module has executed

31

and generated new data in response to the current
NSYS value sent by the SYSTEM. 8 An X is placed in the

Updated row to indicate that data output of the module
contains updated information. Modules without an X still
have data associated with them, but it is from

computations in response to a previous NSYS value.
In the network shown in Figure 5.14, module M1

executes first, and copies its output data to the memory
regions associated with each of its two output pods. As
stated above, during module instantiations, each module

creates a data struct for each of its input and output
ports. Thus M1 has two separate data structs for each of
it's output pods: Struct 1 and Struct 1A. Although there
are two separate structs, each contain identical
information. In actuality, a single output port could have
been used and multiple connections run from it to
downstream modules. In TESS, however, the decision
was made to have a single connection at each input or
output port. This was done to better model certain
components. For instance, the compressor module has
two output pods, one to the shaft and one to the
downstream mixing volume. Both data sets associated
with each output, however, contain the same information.
The data in Struct 1 and 1A is described by Table 5.3.

Module 1 2 3 4 5 6 7

Updated X

Table 5.3- Representation of Data Struct I and Struct 1A

Similarly, module M2 executes and copies the data
from Struct 1 into it's internal arrays, computes any new
data, and copies the output data to the data struct
associated with its two output pods: Struct 2 and Struct
2A. The data in Struct 2 and Struct 2A are then

described by Table 5.4.

Module 1 2 3 4 5 6 7

Updated X X

Table 5.4 - Representation of Data Struct 2 and Struct 2A

Modules M3 and M4 execute next. M3 copies the data
from Struct 2 and outputs the data to Struct 3. M4 copies
the data from Struct 2A and outputs the data to Struct 4.
The data in Struct 3 and Struct 4 are described by Table
5.5 and Table 5.6, respectively.

Module 1 2 3 4 5 6 7

Updated X X X

Table 5.5 - Representation of Data Struct 3

8. Recallthat theSYSTEMmodulesendsan NSYSvalueto the
entirenetworkandthen waitsuntil eachof themoduleshas exe-
cutedinresponseto thatparticularNSYSvalue.

Module 1 2 3 4 5 6 7

Updated X X X

Table 5.6 - Representation of Data Struct 4

Notice that the data structs are now different due to

the fact that M3 and M4 are in parallel paths. The output
of modules M3 and M4 are both connected to the input
ports of M6. Before the input data can be copied into
Struct 6, the data sets from Struct 3 and Struct 4 must be

integrated.
In looking at the incoming data from the perspective of

M6, it "sees" that both structs contain updated
information about modules M1 and M2. This means that
both structs contain the same information about these

modules. It also sees that neither struct has any updated
information about modules M5, M6, and M7. This also
means that both structs contain the same information

about these modules as these modules have not yet
executed.

The difference in the data exists with modules M3 and
M4. Module M6 sees that the data in Struct 3 contains

updated information about module M3. On the other
hand, the data in Struct 4 contains old (non-updated)
information about M3. Module M6 would want to ignore
the information about M3 contained in Struct 4, as it was
old information, and use only the information about
module M3 contained in Struct 3.

Similarly, M6 would want to ignore the information
about module M4 contained in Struct 3, as it was old
information, and use only the data about module M4

contained in Struct 4. Applying the above strategy, M6
would executes and copy the data from Struct 3 and
Struct 4 into it's internal arrays, computes any new data,
integrate the two sets of data and copy the output data to
the data struct associated with its output port: Struct 6.
The data in Struct 6 is then described by Table 5.7.

Module 1 2 3 4 5 6 7

Updated X X X X X

Table 5.7 - Representation of Data Struct 6

When module M5, contained in the other branch of
the network, executed itwould copy the data from Struct
1A into it's internal arrays, computes any new data, and
copy the output data to the data struct associated with its
output ports: Struct 5. The data in Struct 5 is then
described by Table 5.8.

Module 1 2 3 4 5 6 7

Updated X X

Table 5.8 - Representation of Data Struct 5

32

The last module in the network, M7, finally executes.
Since it receives input from two upstream modules, it will
have to integrate the input data as was done in module

M6, using data from Struct 6 and Struct 5. In looking at
Tables 5.6 and 5.7, which represent those structs, M7
would "see" that both structs contain updated information
about module M1; that Struct 6 contains updated data on
modules M2, M3, M4, M6, and Struct 5 contained

updated data on module M5. M7 upon executing, would
copy the data from the two structs, integrate the two sets
of data and copy the output data to the data struct
associated with its output port: Struct 7. The data in
Struct 7 is then described by Table 5.9.

Module 1 2 3 4 5 6 7

Updated X X X X X X X

Table 5.9 - Representation of Data Struct 7

As can be seen from Table 5.8, the data in Struct 7

contains a completely updated set of data describing the
system. In general, once every module in the network
has executed, the last module (i.e., the module at the

bottom of the network) will have a complete description
of the data from all of the modules in the network. In

TESS, the SYSTEM-END module is always the last
module in a network. Its output port is connected to the
input port of the SYSTEM module. Thus, the data struct
associated with the output port of the SYSTEM-END
module is also the struct associated with the input port
for the SYSTEM module. This ensures that the SYSTEM

module always receives completely updated data.
The thought process expressed above was

implemented as the methodology used to combine data
in modules having more than one input data port. An
integer variable, CHKFLAG, is included in the data struct
for each module in the network. When each module

executes, it sets its CHKFLAG value to 1 (The SYSTEM
module resets the CHKFLAG values to zero after each

network execution). The process can be expressed as
follows:

• In comparing multiple sets of input data for a given
module, if one of the sets has a CHKFLAG value of

1, that data has been updated and can be used. For
the case when none of the sets has a CHKFLAG

value, this means that module has not yet run and
any value can be used, as all the values are identi-
cal.

33

6.0 Description of TESS Modules
Execution

This Section presents a detailed description of each of
the modules currently supplied in TESS. For each
module, the following information is supplied:

• Input and output port connection requirements
• Input parameter requirements

6.1 SYSTEM

Module Description - The SYSTEM module controls
the simulation execution.

Input and Output Ports - The SYSTEM module has
a single input port and a single output port. The output
port must be connected to the environment module and
the upstream port must be connected to the SYSTEM-
END module's output port. This creates a data
connection loop from the SYSTEM-END module to the
SYSTEM module. Figure 6.1 illustrates the SYSTEM
and SYSTEM-END combination. IMPORTANT: There

must only be one instance of the SYSTEM module.

• Simulation The Simulation Status Output
Status displays various messages indicating

the action that the simulation is

performing or one that has been
completed

Figure 6.1 - SYSTEM Module Shown Connected In Typi-
cal Fashion

Input Parameters - The following are the user-
controllable parameters displayed in the SYSTEM
module's control panel (see Figure 6.2):

• run

• steady state

• transient

•starting
•ending

Toggle button used to start and stop
the simulation

Toggle button used to control visibility
of pop up windows containing steady
state balancing methods and their
control parameters
Toggle button used to control visibility
of pop up windows containing tran-
sient solver methods and their control

parameters
The simulation starting time, (sec)
The simulation ending time, (sec)

Two widgets are also displayed in the SYSTEM
control panel to provide the user with feedback as the
simulation is running:

• elapsed time Dial which indicates the elapsed simu-
lation time

Figure 6.2 - SYSTEM Module Control Panel

Module Execution - As described in the TESS

Message Passing Under AVS section of Section 5, each
module responds to certain NSYS values sent by the
SYSTEM module. The order in which the NSYS values

are sent by the SYSTEM is described in the Operating
Paradigm Implementation Under AVS section of Section
5. The flowchart shown in Figure 6.3 provides an
overview of the SYSTEM modules execution process. A
detailed description of each step in the process follows
the flow chart.

• SYSTEM sends an NSYS value of 0 to the network
to establish connections between each module. This

is necessary so that all pointers to connected input
and output ports are initialized. Failure to do this can
result in null pointers in modules which are con-
nected to multiple upstream modules. This will cause
the initialization scheme (see Section 5.2.1) to fail
and produce multiple listings of a component in the
comp.list.no file.

• Execution control passes into a continuous loop
which waits until the user presses the 'run' button.
An integer flag, RUN, which corresponds to the
value of the 'run' toggle button is used to control
when the simulation is to execute (initially, the toggle
is off and RUN is zero). When the user presses the
'run' button (setting RUN to 1), an
AVSCOROUT_INPUT call is used to get the current
values of all of the input parameters for all widgets
controlled by the SYSTEM module.

• As stated above, the SYSTEM module provides pop-
up windows to display information about the steady

34

state and transient solvers. Based on the values of

the integer flags STDYST and TRANS which corre-

spond to the value of the 'steady state' and 'tran-

sient' toggle buttons, respectively, the SYSTEM
module then either hides or shows these pop-up

windows. Also, the AVSMODIFY_PARAMETER

command is used to update the 'Elapsed Time' dial

widget so that its minimum and maximum values

correspond to the values listed in the 'starting time'

and 'ending time' widgets.

• The SYSTEM module's data arrays are initialized to

zero and those values copied to the data set associ-

ated with the SYSTEM's output port which is

accessed by the integer pointer OUTDATA.

• The AVSMODIFY_PARAMETER command is issued

to display a message identifying the current version

of TESS in the Simulation Status Output widget.
• The simulation time is set to -1. This is done to indi-

cate that the system has not yet been balanced.
• SYSTEM creates file comp.list.no and writes a five

line header to the file. It then sends subroutine PRE-

SET the NSYS value of 1. Subroutine PRESET is

used whenever an NSYS value is sent to the mod-

ules in the network. It first calls subroutine GET-

POINTER to get the pointer (INDATA) which
accesses the data set associated with the SYSTEM

module's input port. This call also returns the current

value of RUN. If RUN is zero, the user has stopped

the simulation (the 'run' toggle button has been
turned off which sets RUN to zero) and subroutine

PRESET returns. Next the data arrays associated

with the input port are copied into internal data

arrays, all of the values in the CHKFLAG array are

reset to zero (see Section 5.2.2 for a discussion of

the CHKFLAG value and its significance), and the

internal data arrays are copied to the data set asso-

ciated with the SYSTEM's output port. Then the AVS
command COROUT_OUTPUT is executed. This

command sends data from the SYSTEM module's

output port to the next downstream module. This will
then cause each module in the network to execute.

Because the SYSTEM module is a coroutine, and as

such runs asynchronously, it will begin to execute its
next command while the other modules are execut-

ing. To prevent this the AVSCOROUT_EXEC call is
executed. This call causes the SYSTEM module to

wait until each module in the network has run. When

the AVSCOROUT_EXEC call returns, subroutine

PRESET returns to the calling program.

• SYSTEM creates file comp.list.up and writes a five
line header to the file and sets the NAUXVAL value

to be equal to its component number (which is

always 1). It then sends an NSYS value of 9 to the
modules in the network by calling subroutine PRE-
SET. Subroutine PRESET returns the current value

of RUN which is checked to see if the user has

stopped the simulation (O=stop, 1=run). If the user

has stopped the simulation, a "SIMULATION

HALTED" message is displayed in the Simulation

I Send an NSYS value of 0 to initialize all pointers

+
I Is RUN button on? I No

 Yes
Send an NSYS value of 1 to create a list of all I

i

m.odules in th_ network an.d hav.e all modules Iamermine their component numt)er

Isendan.SYSvalue haveea°.moduleIin the network determine and list each of the Imodules connected to its input port(s)

I Determine and list for each module in the
network the modules connected to its output
port(s)

I Send and NSYS value of 2 to have each module
in the network write its design point values to the
system

I Send and NSYS values of 3 and 4 to have each
mocJploin the network determine its correction
coefficient terms

,sNYvusoonowcmogule in me network write its initial transient

I
operating point values to,the system

I Based on the steady-stat.e met.hod selected by I
the user, call.corresponging.suqro.utine [o Inum.e,dca,y oemrmine smaoy-state engine
conoitions at initial transient operalJng point

I Based on the transient method selected bv the I
user.,call.corresponding subroutine to nurfierically
run translem I

I

Figure 6.3 - Flowchart Describing SYSTEM module
Control Process

35

Status Output widget.
• SYSTEM creates file comp.list.dn, writes a five line

header to the file, determines the downstream mod-
ule(s) for each module in the network and writes
those relationships to the file.

• SYSTEM sends an NSYS value of 2 to the modules

in the network by calling subroutine PRESET. Sub-
routine PRESET returns the current value of RUN

which is checked to see if the user has stopped the

simulation (0=stop, 1=run). If the user has stopped
the simulation, a "SIMULATION HALTED" message
is displayed in the Simulation Status Output widget.

• SYSTEM begins the correction computing phase of
operation and a "Computing Correction Coefficients"
message is displayed in the Simulation Status Out-
put widget. SYSTEM then sends an NSYS value of 3
to the modules in the network by calling subroutine
PRESET. Subroutine PRESET returns the current
value of RUN which is checked to see if the user has

stopped the simulation (0=stop, 1=run). If the user
has stopped the simulation, a "SIMULATION
HALTED" message is displayed in the Simulation
Status Output widget.

• SYSTEM then sends an NSYS value of 4 to the

modules in the network by calling subroutine PRE-
SET. Subroutine PRESET returns the current value
of RUN which is checked to see if the user has

stopped the simulation (0=stop, 1=run). If the user
has stopped the simulation, a "SIMULATION
HALTED" message is displayed in the Simulation
Status Output widget.

• SYSTEM begins the operating point balancing
phase of operation and a "Writing Operating Point
Data" message is displayed in the Simulation Status
Output widget. SYSTEM then sends an NSYS value
of 10 to the modules in the network by calling sub-
routine PRESET. Subroutine PRESET returns the
current value of RUN which is checked to see if the

user has stopped the simulation (0=stop, 1=run). If
the user has stopped the simulation, a "SIMULA-
TION HALTED" message is displayed in the Simula-
tion Status Output widget.

• SYSTEM then sends an NSYS value of 8 to the

modules in the network by calling subroutine PRE-

SET. Subroutine PRESET returns the current value
of RUN which is checked to see if the user has

stopped the simulation (0=stop, 1=run). If the user
has stopped the simulation, a "SIMULATION
HALTED" message is displayed in the Simulation
Status Output widget.

• SYSTEM now attempts to balance the engine at the
operating point. It first determine the number of dif-
ferential equations in the system by calling subrou-
tine GETNUMEQN. This subroutine checks the

comp.list.no file for components with a 1 in the

solver flag column and sums the number of differen-
tial equations (shafts and ducts have a single differ-
ential equation while mixing volumes have two).

• SYSTEM next determines which balancing method
the user has selected. The list of available steady
state balancing methods and their control parame-
ters are contained in two pop-up windows whose vis-
ibility is controlled by the 'steady-state' toggle button
in the SYSTEM control panel. When the 'steady-
state' button is highlighted (i.e., it is on), two small
pop-up windows appear (see Figure 6.4). The left
window contains the available selected steady state

balancing methods. Currently there are two balanc-
ing methods available in TESS. These are the New-
ton-Raphson iterative method and the fourth-order
Runge-Kutta method. These are presented as radio
buttons which provide the user with mutually exclu-
sive selection of a method. The control parameters
associated with that method are then displayed in
the right hand pop-up window. Selecting a different
method will display different control parameters.

• Using the variable SELECT1, which contains the
string indicating the user's selected steady state bal-
ancing method, SYSTEM calls the appropriate sub-
routine and passes the control parameters as
arguments. These subroutines then execute until the
system has been balanced. For a detailed explana-
tion of the steady state balancing methods, see
Appendix B of [4].

• SYSTEM then determines which transient solver the

user has selected. The list of available steady state

balancing methods and their control parameters are
contained in two pop-up windows whose visibility is

Figure 6.4 - SYSTEM Module Steady-state Methods Pop-up Windows

36

Figure 6.5 - SYSTEM Module Transient Methods Pop-up Windows

controlled by the 'transient' toggle button in the SYS-
TEM control panel. When the 'transient' button is
highlighted (i.e., it is on), two small pop-up windows
appear (see Figure 6.5). The left window contains
the available transient solvers. Currently there are
four solvers available in TESS. These are the Modi-

fied Euler, Fourth-Order Runge-Kutta, Adams and
Gear's Stiff method. These are presented as radio
buttons which provide the user with mutually exclu-
sive selection of a method. The control parameters
associated with the selected solver are then dis-

played in the right hand pop-up window. Selecting a
different method will display different control parame-
ters.

• Using the variable SELECT2, which contains the
string indicating the user's selected transient solver,
SYSTEM calls the appropriate subroutine and
passes the control parameters as arguments. These
subroutines then execute until the system has com-
pleted the simulation. For a detailed explanation of
the transient solvers, see Appendix B of [4].

Once the simulation has been complete, a
"SIMULATION COMPLETE" message is displayed in the
Simulation Status Output widget and the 'run' toggle
button is turned off (not highlighted). Execution control
then goes to the beginning of the loop and waits until the
user presses the 'run' button at which time the simulation
is started again.

6.2 SYSTEM-END

Module Description - The SYSTEM-END module is
used to combine data from any module whose output
ports exit to the atmosphere and send it to the SYSTEM
module. These would typically be nozzles and overboard
bleed components.

Input and Output Ports - The SYSTEM-END module
has four input ports and a single output port. The input
ports are to be connected to any module whose output
ports exit to the atmosphere. The output port MUST be
connected to the input port of the SYSTEM module. The

right-hand input port is a REQUIRED port and must be
connected in order for the module to execute. Additional

connections may be made to any of the remaining input
pods. Figure 6.6 illustrates the SYSTEM-END module
connected in typical fashion.

IMPORTANT: There must only be one instance of the
SYSTEM-END module.

SYSTEM END

Figure 6.6 - SYSTEM-END Module Shown Connected In
Typical Fashion.

Input Parameters - There are no input parameters for
the SYSTEM-END module and, therefore, it has no

control panel.
Module Execution - The SYSTEM-END module

does not respond to any particular NSYS values. It
executes when it receives new input from the upstream
modules. Its only purpose is to combine data from
multiple input data sets into a single data set which is
then sent to the SYSTEM module.

6.3 Bleed

Module Description - The bleed module represents a
bleed duct. It is typically used to provide cooling air to a
bleed-cooled turbine, or to provide customer air.

Input end Output Ports - The bleed module has a
single input port and a single output port allowing
connection to one upstream mixing volume component
and one downstream mixing volume component. If the
bleed is to provide customer or overboard bleed flow, its
output port may be connected to the SYSTEM-END
module. Since there is only a single input port, it is the
REQUIRED port and must be connected in order for the
module to execute. Figure 6.7 illustrates bleed module
connected in typical fashion.

3?

volume

Figure 6.7 - Bleed Module Shown Connected In Typical
Fashion

Input Parameters - The following are the user-
controllable parameters displayed in the bleed module's
control panel (see Figure 6.8):

• name A unique, user-defined, 10 charac-

ter string which is used to identify
the instance of bleed module

• mass flow rate The design point bleed mass flow
rate, (Ibm/sec)

Figure 6.8 - Bleed Module Control Panel

Module Execution - As described in the TESS

Message Passing Under AVS section of Section 5, each
module responds to certain NSYS values sent by the
SYSTEM module. The following describes the bleed
module's responses to various NSYS values:

NSYS = 1

In response to an NSYS value of 1, the bleed
determines its unique component number (NCOMP). It
then appends this information to the comp.list.no file
along with its instance name, component type (bled),
component code (0088), and solver flag (0).

NSYS = 9

In response to an NSYS value of 9, the bleed
determines the component which is connected to its
input port and appends it to the comp.list.up file. The
NAUXVAL value received at the input port is the
component number of the upstream component. This
component number is stored as NUPCOMP, and saved
to be used later in the simulation to access information
about the upstream component.

NSYS=2
In response to an NSYS value of 2, the bleed writes

its user-defined design point value of mass flow rate
(WBLEDD) to the massflow data array.

NSYS = 3

In response to an NSYS value of 3, the bleed

computes the design point value of the specific heat ratio
for the working fluid. The bleed module first determines

the design point temperature (TIND), pressure (PIND),
enthalpy (HIND) and fuel-air ratio (FARIND) for the
upstream mixing volume. A call to subroutine
PROCOMNPSS returns the design specific heat ratio

(GMIND), which is saved for later use. The enthalpy and
faratio data arrays for the bleed are then updated using
HIND, and FARIND, respectively.

NSYS = 8

In response to an NSYS value of 8, the bleed module

computes the operating point value of the specific heat
ratio for the working fluid, and the operating point value
of mass flow rate. The module first determines the

operating point temperature (TINOP), pressure (PINOP)
and fuel-air ratio (FARINOP) for the upstream mixing
volume. A call to subroutine PROCOMNPSS returns the

operating point specific heat ratio (GMINOP). Subroutine
BLEED is then called to determine the operating point
mass flow rate, WBLEEDOP. The massflow and faratio

data arrays for the bleed are then updated using
WBLEEDOP and FARINOP, respectively.

NSYS = 7

In response to an NSYS value of 7, the bleed
computes the value of the specific heat ratio for the
working fluid, and the mass flow rate. The module first

determines the temperature (TIN), pressure (PIN) and
fuel-air ratio (FARIN) for the upstream mixing volume. A

call to subroutine PROCOMNPSS returns the specific
heat ratio (GMIN) and enthalpy (HIN). Subroutine
BLEED is then called to determine the mass flow rate,
WBLEED. The massflow, enthalpy and faratio data

arrays for the bleed are then updated using WBLEED,
HIN, and FARIN, respectively.

6.4 Combustor

Module Description - The combustor module adds
thermal energy to the working fluid in the engine through
combustion of jet fuel (assumed to be JP-4). Fuel flow
rate is controlled through the use of a user-defined fuel
transient control schedule.

Input and Output Ports - The combustor module has

a single input port and a single output port allowing
connection to one upstream mixing volume component
and one downstream mixing volume component. Since
there is only a single input port, it is the REQUIRED port
and must be connected in order for the module to
execute. Figure 6.9 illustrates a combustor module
connected in typical fashion.

38

volulnm

Figure 6.9 - Combustor Module Shown Connected In
Typical Fashion

Input Parameters - The following are the user-
controllable parameters displayed in the combustor
module's control panel (see Figure 6.10):

.name

• mass flow rate

• efficiency

• fuel flow rate

• fuel flow rate-op

• transient control

A unique, user-defined, 10 char-
acter string which is used to iden-
tifythe instance of combustor
module

The design point combustor mass
flow rate, (Ibm/sec)
The design point combustor effi-
ciency, (dimensionless)
The design point combustor fuel
flow rate, (Ibm/sec)
The operating point combustor
fuel flow rate, (Ibm/sec)

Toggle button to control visibility
of pop-up windows containing
schedulestransient control sched-

ule parameters for fuel flow rate

Figure 6.10 - Combustor Module Control Panel

Module Execution - As described in the TESS

Message Passing Under AVS section of Section 5, each
module responds to certain NSYS values sent by the
SYSTEM module. The following describes the
combustor module's responses to various NSYS values:

NSYS = 1

In response to an NSYS value of 1, the combustor
determines its unique component number (NCOMP). It
then appends this information to the comp.list.no file
along with its instance name, component type (comb),
component code (0044), and solver flag (0).

NSYS = 9

In response to an NSYS value of 9, the combustor
determines the component which is connected to its
input port and appends it to the comp.list.up file. The
NSYS value received at the input port is the component
number of the upstream component. This component
number is defined as NUPCOMP and saved for later
use.

NSYS--2
In response to an NSYS value of 2, the combustor

writes the design point values of mass flow rate
(WDOTID) and fuel flow rate (WFD) to the massflow and
fuelflow data arrays, respectively.

NSYS = 3
In response to an NSYS value of 3, the combustor

first determines the temperature (TIND), pressure
(PIND) and fuel-air ratio (FARIND) values at its inlet from
the upstream mixing volume component. The module
then determines the component number (NDNCOMP)
for the mixing volume which is connected to its output
(downstream) ports. Using this information, the design
point values of temperature (TOUTD) and pressure
(POUTD) at its exit are obtained from the downstream
mixing volume. TIND, PIND, TOUTD, POUTD,
NUPCOMP and NDNCOMP are saved to be used later
in the simulation.

Subroutine SETCOMBUSTOR is then called to

determine the design values of enthalpy (HOUTD) and
the temperature interpolation constant (BETACMB)
which is saved to be used in subsequent computations.
Also, the design point energy term, EOUTD, which
represents the rate of heat energy addition in the
combustor due to combustion of the fuel is computed.

The design point fuel air ratio of the combustor (FARD) is
then computed. The massflow, fuelflow, enthalpy, faratio,
and energy data array values for the combustor are
updated using the WDOTID, WFD, HOUTD, FARD and
EOUTD, respectively.

NSYS = 8
In response to an NSYS value of 8, the combustor

obtains the operating point temperature (TINOP),
pressure (PINOP) and fuel-air ratio (FARINOP) values
for the upstream mixing volume. Next, operating point
values of temperature (TOUTOP) and pressure
(POUTOP) from the downstream mixing volume is
obtained.

Subroutine COMBUSTOR is then called to determine

the operating point value of mass flow rate in the
combustor (WDOTOP). The operating point fuel air ratio
of the combustor (FAROP) is then computed. The
massflow and faratio data array values for the combustor
are updated using the WDOTOP and FAROP,

respectively.

NSYS = 5
In response to an NSYS value of 5, the combustor

39

first determines the temperature (TIN), pressure (PIN)
and fuel-air ratio (FARIN) values for the upstream
component, and the values of temperature (TOUT) and
pressure (POUT) from the downstream mixing volume.

The fuel flow rate value during the transient is
dependent on the fuel flow transient control schedule
defined by the user. The fuel flow schedule allows the
user to define the fuel flow rate at four time values during
the transient. For a more detailed description of defining
transient control schedules, see Appendix D of [4].

Based on the current simulation time (TIME), the
value of fuel mass flow rate (WFUEL) is computed.
Subroutine COMBUSTOR then computes the mass flow
rate (WDOTIN), enthalpy (HOUT) and energy term
(EOUT) for the combustor. The fuel air ratio of the
combustor (FAR) is then computed. These values are

then used to update the massflow, fuelflow, enthalpy,
faratio, and energy data arrays for the combustor.

6.5 Compressor
Module Description - The compressor module

represents a variable-stator compressor used to
increase the kinetic energy of the working fluid in the
compressor by transmitting the mechanical energy from
a shaft to the fluid.

Input and Output Ports - The compressor module
has one input port and two output ports. The single input
port is to be connected to a mixing volume module. The
left-hand output port is to be connected to a shaft module
and the right-hand output port is to be connected to a
mixing volume. The input port is a REQUIRED ports and
must be connected in order for the module to execute.

Figure 6-11 illustrates a compressor module connected
in typical fashion.

• stator angle

• stator angle bias

• base

performance

map filename
• variable

performance
map filename

The design point compressor vari-
able-stator angle, (deg)
The design point compressor
variable-stator angle bias, (deg)
The name (and path) of the file
containing baseline performance
data for the compressor
The name (and path) of the file
containing baseline performance
data performance for the variable

stator

• mass flow rate-op The operating point compressor
mass flow rate, (Ibm/sec)

• transient control Toggle button to control visibility
of pop-up windows containing
schedulestransient control

schedule parameters for variable
stator angle

shaft voklme

Figure 6.11 - Compressor Module Shown Connected In
Typical Fashion

Input Parameters - The following are the user-
controllable parameters displayed in the compressor
module's control panel (see Figure 6-12):

• name

• mass flow rate

• efficiency

A unique, user-defined, 10 char-

acter string which is used to iden-
tify the instance of the compressor.
The design point compressor
mass flow rate, (Ibm/sec)
The design point compressor effi-
ciency, (dimensionless)

Figure 6.12 - Compressor Module Control Panel

Module Execution - As described in the TESS

Message Passing Under AVS section of Section 5, each
module responds to certain NSYS values sent by the
SYSTEM module. The following describes the

compressor modules responses to various NSYS values:

4O

NSYS = 1
In response to an NSYS value of 1, the compressor

determines and saves its unique component number
(NCOMP). It then appends this information to the
comp.list.no file along with its instance name,
component type (comp), component code (0022), and
solver flag (0).

NSYS = 9
In response to an NSYS value of 9, the compressor

determines the components which are connected to its
input port and appends it to the comp.list.up file. The
NAUXVAL value received at the input port is the
component number of the upstream component. This
component number is stored as NUPCOMP and saved
to be used later in the simulation to access information

about the upstream component.

NSYS = 2
In response to an NSYS value of 2, the compressor

writes its user-defined design point value of mass flow

rate (WDOTID) to the massflow data array.

NSYS = 3

In response to an NSYS value of 3, the compressor
computes the correction coefficients WCORR and
TCORR, in the following procedure.

The design point temperature (TIND), pressure
(PIND), enthalpy (HIND) and fuel-air ratio (FARIND) are
obtained from the upstream mixing volume. The
compressor then determines which output port is
connected to the shaft and which is connected to the

mixing volume. Although the user should connect the
left-hand output port to the shaft and the right-hand
output port to the mixing volume, this check allows the
module to operate correctly even if the user has
connected the modules improperly. The component
number for the mixing volume is NDNCOMP1 and the
shaft component number is NDNCOMP2. Both are
saved to be used in subsequent calculations. The design
point temperature (TOUTD) and pressure (POUTD) are
then obtained from the downstream mixing volume and

the design point spool speed (XSPOLD) is obtained from
the shaft.

Subroutine GETGEMAP reads in performance data

for the compressor using the string BFILENAME which
contains the filename (and path) of the file which the
user has selected using the base map file browser in the

compressor module control panel. This map contains
baseline performance data for the compressor, which
has been normalized to the compressor design point.
This data is saved to be used when performance data is

required.
Subroutine SEARCHMAP is then called to interpolate

the design point value of mass flow rate (WARM) and
efficiency (ETAMAP) from the baseline performance map
data. ETAMAP is then multiplied by the user-defined

design efficiency value (ETAD) to give the compressor
efficiency (ETACMM). Next, the bias of the stator

geometry is then accounted for by subtracting the bias
(BIAS) from the design stator geometry value (CVGPD).

Subroutine GETGEMAP is called again, this time
reading in the variable stator performance data using the
string VFILENAME which contains the filename (and
path) of the file which the user has selected using the
variable map file browser in the compressor module
control panel. This map contains the effects of off-
schedule stator settings on the compressor mass flow

rate, which have been normalized to the compressor
design point. This data is saved to be used when
performance data is required.

Subroutine SEARCHMAP is then called to interpolate

the design point change in baseline mass flow rate
(CSHIFT), due to variable geometry effects form the
variable map data. This is then used to determine the
mass flow correction coefficient (WCORR) which is
saved for use in subsequent computations. The
temperature interpolation constant (BETACOM) is
computed next (see mathematical models Section on
compressor for more information) and the temperature
correction coefficient (TCORR) determined and saved
for later use.

The design values of enthalpy (HOUTD), energy term
(EOUTD), stator variable geometry (CVGPD) and fuel-
air ratio (FARIND) are placed in the enthalpy, energy,
vargeom and faratio data arrays, respectively.

NSYS = 8

In response to an NSYS value of 8, the compressor
first obtains the operating point temperature (TINOP),
pressure (PINOP) and fuel-air ratio (FARINOP) from the
upstream mixing volume. The operating point
temperature (TOUTOP) and pressure (POUTOP) are
then obtained from the downstream mixing volume and

the operating point spool speed (XSPOLOP) is obtained
from the shaft.

The point to be located on the performance map,
XCOM and YCOM, are computed next. XCOM

represents the operating point pressure ratio across the
compressor (POUTOP/PINOP) normalized to the design

point pressure ratio (POUTD/PIND)o YCOM represents
the ratio of operating point corrected spool speed
(XSPOOLOP/,J'T-/N) normalized to the corrected design
spool speed (XSPOLD/J'ITND).

Subroutine SEARCHMAP is then called to interpolate

the design point value of mass flow rate (WARMOP) and

efficiency (ETAMAPOP) from the baseline performance
map data at the desired point. ETAMAPOP is then
multiplied by the user-defined design efficiency value
(ETAD) to give the compressor efficiency (ETACOM).
Next, the bias of the stator geometry is then accounted
for by subtracting the bias (BIAS) from the operating
point stator geometry value (CVGPOP).

Subroutine SEARCHMAP is then called a second

time to interpolate the operating point change in baseline
mass flow rate (CHSIFT), due to variable geometry
effects from the variable map data. This is then used to
determine the operating point mass flow rate in the

41

compressor(WDOTOP).
The operatingpointvaluesof massflow rate

(WDOTOP),statorvariableandfuel-airratio(FARINOP)
areplacedin themassflowandfaratiodataarrays,
respectively.

NSYS = 5

In response to an NSYS value of 5, the compressor

obtains the temperature (TIN), pressure (PIN), enthalpy
(HIN) and fuel-air ratio (FARIN) from the upstream
mixing volume. The temperature (TOUT) and pressure

(POUT) are then obtained from the downstream mixing
volume and spool speed (XSPOOL) is obtained from the
shaft.

The point to be located on the performance map,
XCOM and YCOM, are computed next. XCOM
represents the pressure ratio across the compressor
(POUT/PIN) normalized to the design point pressure
ratio (POUTD/PIND). YCOM represents the ratio of the
corrected spool speed (XSPOOL/JT--_) normalized to

the corrected design spool speed (XSPOLD/I_).
Subroutine SEARCHMAP is then called to interpolate

the design point value of mass flow rate (WARM) and
efficiency (ETAMAP) from the baseline performance map
data at the desired point. ETAMAP is then multiplied by
the user-defined design efficiency value (ETAD) to give
the compressor efficiency (ETACOM).

Next, the bias of the stator geometry is then
accounted for. Stator variable geometry values during
the transient are dependent on the stator variable
geometry transient control schedule defined by the user.
The variable stator schedule allows the user to define

the stator angle at four time values during the transient.
For a more detailed description of defining transient
control schedules, see Appendix D of [4].

Based on the current simulation time (TIME), the
value of stator variable geometry (CVGP) is computed.
Subroutine SEARCHMAP is then called to interpolate
the change in baseline mass flow rate (CHSIFT), due to
variable geometry effects from the variable map data.
This is then used to determine the mass flow rate in the

compressor (WDOTIN).
Next, the enthalpy at the compressor exit (HOUT) is

computed by subroutine PROCOMNPSS. The energy
term (EOUT) is then computed and the mass flow rate
(WDOTIN), enthalpy (HOUT), energy term (EOUT),
stator variable geometry (CVGP) and fuel-air ratio

(FARIN) are placed in the massflow, enthalpy, energy,
vargeom and faratio data arrays, respectively.

6.6 Duct

Module Description - The duct module represents a
constant area, adiabatic duct with friction. Stagnation
pressure losses are included, as are the effect of the

momentum of the working fluid. The dynamic form of
linear momentum equation is used to solve for the duct

value mass flow rate (see Section 3).
Input and Output Ports - The duct module has a

single input port and a single output port allowing

connection to one upstream mixing volume component
and one downstream mixing volume component. Since
there is only a single input port, it is the REQUIRED port
and must be connected in order for the module to
execute. Figure 6-13 illustrates the duct module
connected in typical fashion.

¥olulno

Figure 6.13 - Duct Module Shown Connected In Typical
Fashion

Input Parameters - The following are the user-
controllable parameters displayed in the duct module's
control panel (see Figure 6-14):

° name

• mass flow rate

• reactance

• mass flow rate-op

A unique, user-defined, 10 char-
acter string which is used to iden-
tiff/the instance of duct module
The design point duct mass flow
rate, (Ibm/sec)
The value of the ducts ratio of

area to length, (ft2/ft)
The operating point duct mass
flow rate, (Ibm/sec)

Figure 6.14 - Duct Module Control Panel

Module Execution - As described in the TESS

Message Passing Under AVS section of Section 5, each

module responds to certain NSYS values sent by the
SYSTEM module. The following describes duct module's
responses to various NSYS values:

NSYS = 1

In response to an NSYS value of 1, the duct
determines its unique component number (NCOMP). It
then appends this information to the comp.list.no file
along with its instance name, component type (duct),

component code (0077), and solver flag (1).

NSYS =
In response to an NSYS value of 9, the duct

determines the component which is connected to its

o

42

inputportandappendsit to thecomp.list.upfile.The
NAUXVALvaluereceivedat the inputport is the
componentnumberof theupstreamcomponent.This
componentnumberisstoredasNUPCOMP,andsaved
tobeusedlaterinthesimulationtoaccessinformation
abouttheupstreamcomponent.
NSYS--2

In response to an NSYS value of 2, the duct writes its
user-defined design point value of mass flow rate
(WDOTID) to the massflow data array.

NSYS = 3
In response to an NSYS value of 3, the duct

determines the component number of the mixing volume
connected to its output port (NDNCOMP).

NSYS = 8

In response to an NSYS value of 8, the duct computes
the values of the constants CDUCT1 and CDUCT2.

These values are saved and used in subsequent
calculations. The duct module obtains the operating

point temperature (TINOP), pressure (PINOP), fuel-air
ratio (FARINOP) and volume (VOLOP) of the upstream
mixing volume, and the operating point pressure
(POUTOP) from the downstream mixing volume.

A call to subroutine DUCT returns the constants

CDUCT1 and CDUCT2. CUDCT1 is the product of the
constant, gc, and the user-defined duct reactance value
(AQL). CDUCT2 is the pressure loss constant, K (see
Section 3).

The faratio data array for the duct is then updated
using FARINOP and the massflow data array is updated
using the user-defined operating point mass flow rate
value WDOTOP.

NSYS = 6
In response to an NSYS value of 6, the duct computes

the derivative mass flow rate value, DWDOTN. The duct

module obtains the temperature (TIN), pressure (PIN),
enthalpy (HIN) and fuel-air ratio (FARINOP) of the
upstream mixing volume, and the pressure (POUT) from
the downstream mixing volume.

The stored mass and mass flow rate of the duct is

needed to compute the mass flow derivative, DWDOTN.
In the DIGTEM model, the stored mass (WSTOR) of the
duct is associated with the upstream mixing volume and
the mass flow rate in the duct (WDOTIN), has been

computed by the solver. After obtaining these values,
subroutine DCTINT computes and returns DWDOTN.

The enthalpy, faratio and massflow_deriv data arrays
for the duct are then updated using HIN, FARIN and
DWDOTN respectively.

6.7 Environment

Module Description The environment module
defines the surrounding environment for the engine
based on user-defined schedules for altitude and Mach

number. It also serves as a simple inlet model,

computing the flight conditions (stagnation pressure and
temperature) at the module exit.

Input and Output Ports - The environment module
has a single input port and a single output port. The input
port MUST be connected to the SYSTEM module. The
output port is connected to a physical engine component
(typically a compressor). Since there is only a single
input port, it is the REQUIRED port and must be
connected in order for the module to execute. Figure 6-
15 illustrates an environment module connected in

typical fashion.

IMPORTANT: There must only be one instance of the
environment module.

Figure 6.15 - Environment Module Shown Connected In
Typical Fashion

Input Parameters - The following are the user-
controllable parameters displayed in the environment
module's control panel (see Figure 6-16):

• name

• altitude

• mach no

° SL temp
• altitude-op

• mach no-op

• transient control

A unique, user-defined, 10 char-
acter string which is used to iden-
tify the instance of environment
module

The design point altitude for
engine operation, (ft)
The design point Mach number
for engine operation, (dimension-
less)
Sea level temperature, (°R)
The operating point altitude for

engine operation, (ft)
The operating point Mach number
for engine operation, (dimension-
less)
Toggle button to control visibility
of pop-up windows containing
schedulestransient control sched-

ule parameters for altitude and
Mach number

Module Execution - As described in the TESS

Message Passing Under AVS section of Section 5, each
module responds to certain NSYS values sent by the
SYSTEM module. The following describes the
environment module's responses to various NSYS
values:

43

Figure 6.16 - Environment Module Control Panel

NSYS = 1

In response to an NSYS value of 1, the environment

determines its unique component number (NCOMP). It
then appends this information to the comp.list.no file
along with its instance name, component type (envr),
component code (0011), and solver flag (0).

NSYS = 9

In response to an NSYS value of 9, the environment

determines the component which is connected to its
input port (this should always the SYSTEM module) and
appends it to the comp.list.up file. The NAUXVAL value
received at the input port is the component number of
the upstream component. This component number is
defined as NUPCOMP.

NSYS=2
In response to an NSYS value of 2, the environment

computes the design values of stagnation temperature
(TENVD) and pressure (PENVD) based on the design
values of altitude (ALTD) and Mach number (XMND) by
calling subroutine FLCOND. These values are then used

to update the temp and press data arrays, respectively.
At this point, TENVD, PENVD, XMND, and ALTD are
written to file comp.envr.val.

NSYS = 3

In response to an NSYS value of 3, the environment

module computes the operating point value of enthalpy
(HENVOP) and updates the enthalpy data array.

NSYS =
In response to an NSYS value of 8, the environment

module computes conditions at the operating altitude
and Mach number. Subroutine FLCOND returns the

stagnation values of temperature (TENVOP) and
pressure (PENVOP). The operating point stagnation
enthalpy (HENVOP) is computed by subroutine
PROCOMNPSS, and the temp, press, and enthalpy data
arrays are then updated.

NSYS = 5

In response to an NSYS value of 5, the environment

computes the values of stagnation temperature (TENV)
and pressure (PENV) based on the values of altitude
(ALl') and Mach number (XMN). Altitude and Mach

number values during the transient are dependent on the
altitude and Mach number transient control schedules

defined by the user. The altitude schedule allows the

user to define the altitude at four time values during the
transient. Similarly, the Mach number schedule allows

the Mach number to be defined at four times during the
transient. For a detailed description of defining transient
control schedules, see Appendix D of [4].

Based on the current simulation time (TIME), the
values of altitude (ALE) and Mach number(XMN) are
computed. Subroutine FLCOND then computes the
stagnation temperature (TENV) and pressure (PENV),
and subroutine PROCOMNPSS then computes the
stagnation enthalpy (HENV). These values are then

used to update the temp, press and enthalpy data
arrays, respectively. Also, the values of TENV, PENV,

XMN, and ALT are then written to file comp.envr.val.

6.8 Mixing Volume

Module Description - The mixing volume module
represents a control volume which defines the state

conditions at the interface between connecting engine
components. It is a mathematical entity which uses the
dynamic forms of continuity, energy and state equations
to solve for the values of stored mass, temperature and
pressure in the volume (see Section 3).

Input and Output Porte - The mixing volume module
has four input ports and four output ports allowing
connection to four different upstream components and
four different downstream components. The right-hand
input port is a REQUIRED port and must be connected in
order for the module to execute. Additional connections

may be made to any of the remaining input ports. Figure
6-17 illustrates a mixing volume module connected in
typical fashion.

IMPORTANT: The mixing volume is designed to be
placed at the interface of connecting physical engine
components.

Figure 6.17 - Mixing Volume Module Shown Connected
In Typical Fashion

Input Parameters - The following are the user-
controllable parameters displayed in the mixing volume
module's control panel (see Figure 6-18):

44

*name

• temperature

• pressure

* volume

° temperature-op

* pressure-op

A unique, user-defined, 10 char-
acter string which is used to iden-
tify the instance of mixing volume
The design point stagnation tem-

perature of the working fluid in the
mixing volume, (° R)
The design point stagnation tem-
perature of the working fluid in the
mixing volume, (Psia)
The component volume, (in3)
The initial operating point stagna-
tion temperature of the working
fluid in the mixing volume, (° R)
The initial operating point stagna-
tion temperature of the working
fluid in the mixing volume, (Psia)

Figure 6.18 - Mixing Volume Module Control Panel

Module Execution - As described in the TESS

Message Passing Under AVS section of Section 5, each
module responds to certain NSYS values sent by the
SYSTEM module. The following describes the mixing
volume responses to various NSYS values:

NSYS = 1

In response to an NSYS value of 1, the mixing volume
determines its unique component number (NCOMP). It
then appends this information to the comp.list.no file
along with its instance name, component type (mxvl),
component code (0033), and solver flag (1).

NSYS = 9

In response to an NSYS value of 9, the mixing volume
determines the components which are connected to its
input ports and appends them to the comp.list.up file.
There may be up to 4 (upstream) components connected
to the mixing volume. The NAUXVAL values received at
each input port are the component numbers of the
upstream components. These component numbers are
placed in the NUPCOMP array and saved to be used
later in the simulation to access information about the

upstream components. In the event that an input port is
unconnected, its NSYS value will be zero. This will

cause the corresponding NUPCOMP array term to be
zero. Subsequently, any NUPCOMP array term which is
zero must be ignored.

NSYS = 2

In response to an NSYS value of 2, the mixing volume
writes its user-defined design point values of

temperature, pressure and volume to the temp, press,
and volume data arrays.

NSYS = 3

In response to an NSYS value of 3, the mixing volume
computes the correction coefficient ECORR, in the
following procedure.

The mixing volume module first determines the
enthalpy, fuel-air ratio, and mass flow rate values for
each of the upstream components. These values are
stored in the HIND, FARIND, and WDOTID arrays
respectively. A call to subroutine SETPREMIX returns
the design fuel-air ratio (FARMVD) and enthalpy (HMVD)
of the mixing volume.

The module then determines which components are
connected to its output (downstream) ports. The
component numbers for these components are placed in
the NDNCOMP array and saved to be used later in the
simulation to access information about the downstream

components. Using this information, the mass flow rate
values for the downstream components, WDOTOUTD,
are obtained.

Next, the module determines if any of the upstream
components are turbines or fuel-adders (combustors).
Turbines remove heat and convert it to rotational energy,

while fuel-adders add heat through combustion. The
DIGTEM model assumes that heat addition and removal
for turbines and fuel-adders takes place in the mixing

volume just downstream of the component. Therefore,
the mixing volume must account for these energy
additions. The dynamic energy equation for the mixing
volume includes the term, 5Q/dt, which is used to
account for the rate of heat addition (5 Q/dt > 0) and rate
of heat removal (_SQ/dt < 0). To provide these heat
addition/removal terms to the mixing volume, the
turbines and fuel-adders compute their 6 Q/dt terms and
place them in energy data arrays (see the discussion on
Turbines and Combustors in this Section).

The mixing volume obtains the energy values for the
turbines and fuel-adders and these terms are placed in

the ENGTERM array. Subroutine SETMIXVOL is then
called to determine ECORR. The ECORR value is saved

and used in subsequent computations for the mixing
volume. The stored mass of the control volume,

WSTOR, is then computed by subroutine
VOLUMENPSS. Finally, the enthalpy, strdmass, and
faratio data arrays for the mixing volume are then
updated for HMVD, WSTOR, and FARMVD.

NSYS = 10

In response to an NSYS value of 10, the mixing
volume writes its user-defined operating point values of

temperature and pressure to the temp and press data
arrays.

45

NSYS = 8

In response to an NSYS value of 8, the mixing volume
determines the operating point values of fuel-air ratio,
and mass flow rate for each of the upstream
components. These are stored in the FAROP, and
WDOTOP arrays, respectively. A call to subroutine
SETPREMIX returns the operating point fuel-air ratio
(FARMVOP) and enthalpy (HMVOP) of the mixing
volume, and the faratio and enthalpy data arrays are
then updated.

NSYS = 7

In response to an NSYS value of 7, the mixing volume
computes pressure in the mixing volume using the ideal
gas law. The temperature (TMV), stored mass (WSTOR)
and volume (VMVD) of the mixing volume are obtained
from the temp, strdmass, and volume data arrays. These
values of temperature, and stored mass have already
been updated by the solver. These values are used in
the ideal gas law equation to determine the pressure in
the mixing volume, PMV. The press data array for the
mixing volume is then updated

NSYS = 5

In response to an NSYS value of 5, the mixing volume
determines values of fuel-air ratio, and mass flow rate

values for each of the upstream components. These
values are stored in the FARIN, and WDOTIN arrays
respectively. The fuel-air ratio and enthalpy of the mixing
volume are then computed so that they may be available
for the downstream module.

The module gets the temperature (TMV) and stored
mass(WSTOR) values for the mixing volume from the
temp and strdmass data arrays and they are used in the
call to subroutine SETPREMIX. The fuel-air ratio

(FARMV) and enthalpy (HMV) of the mixing volume are
returned by this call and used to update the faratio and
enthalpy data arrays, respectively.

NSYS = 6

In response to an NSYS value of 6, the mixing volume
computes the enthalpy, fuel-air ratio, temperature
derivative, and stored-mass derivative values in the

following procedure.
The enthalpy, fuel-air ratio, fuel mass flow rate and

mass flow rate values for each of the upstream
components is first determined. These values are stored
in the HIN, FARIN, WFL, and WDOTIN arrays
respectively. The temperature (TMV), pressure (PMV),
and stored mass (WSTOR) are retrieved from the data
arrays. The call to subroutine SETPREMIX returns the
fuel-air ratio (FARMV) and enthalpy (HMV) of the mixing
volume.

The mass flow rate values for the downstream

components, WDOTOUT, are obtained. Any energy
terms from upstream fuel-adders or turbines are placed
in the ENGTERM array. Subroutine MlXVOL is then
called to determine the stored mass derivative (DWMV)
and the energy derivative term, DEMV. DEMV is sent to

subroutine VOLINT, which determines the temperature
derivative term, DTMV.

The enthalpy, faratio, temp_deriv and strdmass_deriv
data array values for the mixing volume are then
updated.

6.9 Nozzle

Module Description - The nozzle module represents
a converging-diverging or converging-only nozzle.
Nozzle throat and exit areas may be adjusted during the
transient by user-defined schedules.

Input and Output Ports - The nozzle module has a
single input port which is to be to an upstream mixing
volume component. It is assumed that the nozzle exits to
the atmosphere, therefore the nozzle output port MUST
be connected to the SYSTEM-END module. Since there

is only a single input port, it is the REQUIRED port and
must be connected in order for the module to execute.

Figure 6-19 illustrates a nozzle module connected in
typical fashion.

Figure 6.19 - Nozzle Module Shown Connected In Typi-
cal Fashion

Input Parameters - The following are the user-
controllable parameters displayed in the nozzle module's
control panel (see Figure 6-20):

,, name A unique, user-defined, 10 char-
acter string which is used to iden-
tify the instance of nozzle module
The design point nozzle mass
flow rate, (Ibm/sec)
The design point nozzle throat
cross-sectional area, (in2)
The design point nozzle exit
cross-sectional area, (in2)
The design point nozzle coeffi-
cient of drag, (dimensionless)

• velocity coefficientThe design point nozzle velocity
coefficient, (dimensionless)

• gross thrust The design point nozzle gross
thrust, (Ibf)

• throat area-op The operating point nozzle throat
cross-sectional area, (in2)

• exit area-op The operating point nozzle exit
cross-sectional area, (in2)

• transient control Toggle button to control visibility

• mass flow rate

• throat area

• exit area

• drag coefficient

46

of pop-up windows containing
schedulestransient control sched-

ule parameters for throat area and
exit area

Figure 6.20 - Nozzle Module Control Panel

Module Execution - As described in the TESS

Message Passing Under AVS section of Section 5, each
module responds to certain NSYS values sent by the
SYSTEM module. The following describes the nozzle
module's responses to various NSYS values:

NSYS = 1
In response to an NSYS value of 1, the nozzle

determines its unique component number (NCOMP). It
then appends this information to the comp.list.no file
along with its instance name, component type (nozz),
component code (0101), and solver flag (0).

NSYS = 9

In response to an NSYS value less than 1000, the
nozzle determines the component which is connected to

its input port and appends it to the comp.list.up file. The
NAUXVAL value received at the input port is the
component number of the upstream component. This
component number is defined as NUPCOMP.

NSYS = 2

In response to an NSYS value which is greater than
zero and of 2, the nozzle writes the design point value of
mass flow rate (WDOTID) to the massflow data array.

NSYS = ;_
In response to an NSYS value of 3, the nozzle module

computes the thrust correction coefficient (FCORR) and
the mass flow correction coefficient (WCORR) based on
the design point values of throat cross-sectional area
(ATHROD) and exit cross-sectional area (AEXlTD).

The module first obtains the design point fuel-air ratio
(FARIND), temperature (TIND) and pressure (PIND)
from the upstream mixing volume. In order to compute
the correction coefficients, the nozzle must determine
the design point temperature and pressure at its outlet.

Since the nozzle exits to the atmosphere, these values
are the temperature and pressure defined by the
environment component and are listed in the
comp.envr.val file. The nozzle module reads that file to

obtain the exit design temperature (TOUTD) and
pressure (POUTD) and flight Mach number (XMND), and
then calls subroutine SETNOZZLE to compute WCORR
and FCORR. The faratio data array is then updated
using the FARIND value.

NSYS = 8

In response to an NSYS value of 8, the nozzle module
computes the operating point values of mass flow rate
and gross thrust based on the operating point values of
throat cross-sectional area (ATHROP) and exit cross-
sectional area (AEXlTOP).

The module first obtains the operating point fuel-air
ratio (FAROP), temperature (TINOP) and pressure
(PINOP) from the upstream mixing volume. The exit
operating point temperature (TOUTOP) and pressure
(POUTOP) and flight Mach number (XMNOP) are read
from the comp.envroval file and then used in the call to
subroutine NOZZLE to compute mass flow rate
(WDOTOP). FAROP and WDOTOP are then used to
update the faratio and massflow data arrays,
respectively.

NSYS = 5

In response to an NSYS value of 5, the nozzle
computes the values of mass flow rate and gross thrust
based on the values of throat cross-sectional area

(ATHROAT) and exit cross-sectional area (AEXlT).

Throat and exit area values during the transient are
dependent on the throat and exit area transient control
schedules defined by the user. The throat area schedule
allows the user to define the throat area at four time

values during the transient. Similarly, the exit area
schedule allows the exit area to be defined at four times

during the transient. For a more detailed description of
defining transient control schedules, see Appendix D of
[4].

First the nozzle module obtains the fuel-air ratio

(FARIN), temperature (TIN) and pressure (PIN) from the
upstream mixing volume. The exit temperature (TOUT)
and pressure (POUT) and flight Mach number (XMN) are
read from the comp.envr.val file.

Based on the current simulation time (TIME), the
values of throat area (ATHROAT) and exit area (AEXIT)
are computed. Subroutine NOZZLE is then called to
compute the nozzle gross thrust (FNOZOP) and mass
flow rate (WDOTOP). FARINOP, WDOTOP and
FNOZOP are then used to update the faratio, massflow,
and thrust data arrays, respectively.

6.10 Shaft

Module Description
The shaft module represents a rotating shaft used to

transmit rotational energy between compressor and

4?

turbinecomponents. It uses the dynamic form of the
angular momentum equation to solve for the rotor speed
(rpm) of the shaft (see Section 3).

Input and Output Ports - The shaft module has four
input ports and four output ports allowing connection to
four different upstream components (typically
compressors) and four different downstream

components (typically turbines). The right-hand input
port is a REQUIRED port and must be connected in
order for the module to execute. Additional connections

may be made to any of the remaining input ports. Figure
6-21 illustrates a shaft module connected in typical
fashion.

Figure 6.21 - Shaft Module Shown Connected In Typical
Fashion

Multiple input and output ports in the shaft module
give the ability to connect multiple components to a
common shaft. This is particularly useful in modeling a
split fan where information about the hub and tip sections
are known. Two compressor components may be used to
model the hub and tip. The multiple input ports on the
shaft module allow both compressors to be connected to
the shaft while having a single connection to the turbine.

Input Parameters - The following are the user-
controllable parameters displayed in the shaft module's
control panel (see Figure 6-22):

• name

• moment inertia

• spool speed

• spool speed-op

A unique, user-defined, 10 char-
acter string which is used to iden-
tify the instance of the shaft
The design point polar moment of
inertia value for the compres-

sor(s)-shaft-turbine(s) assembly,
(Ibf-in-sec2)
The design point shaft speed,
(rpm)
The operating point shaft speed,
(rpm)

Figure 6.22 - Shaft Module Control Panel

Module Execution - As described in the TESS

Message Passing Under AVS section of Section 5, each

module responds to certain NSYS values sent by the
SYSTEM module. The following describes the shaft
modules responses to various NSYS values:
NSYS = 1

In response to an NSYS value of 1, the shaft

determines its unique component number (NCOMP). It
then appends this information to the comp.list.no file
along with its instance name, component type (shft),
component code (0055), and solver flag (1).

NSYS =

In response to an NSYS value of 9, the shaft
determines the components which are connected to its
input ports and appends them to the comp.list.up file.
There may be up to 4 (upstream) components connected
to the shaft. The NAUXVAL values received at each input
port are the component numbers of the upstream
components. These component numbers are placed in
the NUPCOMP array and saved to be used later in the
simulation to access information about the upstream
components.

In the event that an input port is unconnected, its
NSYS value will be zero. This will cause the

corresponding NUPCOMP array term to be zero.
Subsequently, any NUPCOMP array term which is zero
must be ignored.

NSYS=2
In response to an NSYS value of 2, the shaft writes its

user-defined design point value of spool speed
(XSPOOL) to the rpm data array.

NSYS = 4

In response to an NSYS value of 4, the shaft
computes the correction coefficient ECORR, in the
following procedure. The shaft module first obtains the
energy term for each of the upstream components, which
are typically compressors. These values are stored in the
ECOMD array. The module then determines which
components (typically turbines) are connected to its
output (downstream) ports. The component numbers for
these components are placed in the NDNCOMP array
and saved to be used later in the simulation to access

information about the downstream components. Using
this information, the energy term for each of the
downstream components are obtained and placed in the
ETURD array. Subroutine SETSHAFT is then called to
compute ECORR which is saved for use in subsequent
calculations.

NSYS = 10

In response to an NSYS value of 10, the shaft writes

its user-defined operating point value of spool speed to
the rpm data array.

48

NSYS = 6

In response to an NSYS value of 6, the shaft
computes the value of the spool speed derivative,
DXSPL. The module first obtains the energy term for
each of the upstream components. These values are
stored in the ECOM array. Next, the energy term for each
of the downstream components are obtained and placed
in the ETUR array. The current value of the shaft spool
speed (XSPL) is obtained from the rpm data array and
used in the call to subroutine SHAFT to compute DXSPL.
The rpm deriv data array value for the shaft is then
updated.

6.11 Turbine

Module Description - The turbine module represents
a bleed-cooled turbine used to convert kinetic energy
into mechanical energy.

Input and Output Ports - The turbine module has
two input ports and one output port. The left-hand input
port is to be connected to a shaft module and the right-

hand input port is to be connected to a mixing volume.
The single output port is to be connected to a mixing
volume module. Both input ports are a REQUIRED port
and must be connected in order for the module to
execute.

IMPORTANT: Because the turbine module incorporates
bleed cooling flow, a bleed module must be present and
correctly connected. The bleed module used to provide
cooling flow must be connected to the mixing volume
connected to the output port of the turbine. This is
illustrated in Figure 6-23.

bleed

Figure 6.23 - Turbine Module Shown Connected In Typi-
cal Fashion

• mass flow rate

• enthalpy drop

• bleed work pct

Input Parameters - The following are the user-
controllable parameters displayed in the turbine
module's control panel (see Figure 6-24):

• name A unique, user-defined, 10 char-
acter string which is used to iden-
tify the instance of the turbine.
The design point turbine mass
flow rate, (Ibm/sec)
The design point enthalpy drop,
(BtuAbm)
The design point percentage
bleed flow doing work on the tur-
bine, (%)

• base

performance
map

The name (and path) of the file
containing baseline performance
data for filenamethe turbine

Module Execution - As described in the TESS

Message Passing Under AVS section of Section 5, each
module responds to certain NSYS values sent by the
SYSTEM module. The following describes the turbine
modules responses to various NSYS values:

Figure 6.24 - Turbine Module Control Panel

NSYS = 1

In response to an NSYS value of 1, the turbine
determines its unique component number (NCOMP). It
then appends this information to the comp.list.no file
along with its instance name, component type (turb),
component code (0066), and solver flag (0).

NSYS = 9

In response to an NSYS value of 9, the turbine
determines the components which are connected to its
input ports and appends them to the comp.list.up file.
The NAUXVAL values received at each input port are the
component numbers of the upstream components.
These component numbers are placed in the NUPCOMP
array and saved to be used later in the simulation to
access information about the upstream components.

NSYS = 2

In response to an NSYS value of 2, the turbine writes
its user-defined design point value of mass flow rate
(WDOTID) to the massflow data array.

NSYS = 3

In response to an NSYS value of 3, the turbine
computes the correction coefficient WCORR, in the

following procedure.
The turbine module first determines which input port

is connected to the shaft and which is connected to the

mixing volume. Although the user should connect the
left-hand input port to the shaft and the right-hand input
port to the mixing volume, this check allows the module
to operate correctly even if the user has connected the

49

modules improperly. The component number for the
mixing volume is NUPCOMP1 and the shaft component
number is NUPCOMP2. Both are saved to be used in

subsequent calculations.
The design point temperature (TIND) and pressure

(PIND) are obtained from the upstream mixing volume
and the design point spool speed (XSPOLD) is obtained
from the shaft. The turbine then determines the

component number of the mixing volume connected to
its output port (NDNCOMP). The design point
temperature (TOUTD) and pressure (POUTD) are then
obtained from the downstream mixing volume.

To determine the design bleed cooling mass flow rate
across the turbine it is necessary to determine which
bleed(s) is connected to the mixing volume connected to
the turbine's output port. The file comp.list.dn (see
Section 5.1.1) is searched to determine if there are any
bleeds which have a downstream component number
identical to NDNCOMP, which is the component number
of the mixing volume component connected to the output
port of the turbine. For each of the bleeds that satisfy this
requirement, the design mass flow rate of the bleed is
obtained and summed to give the total design bleed flow
used to cool the turbines (WBLEDD). This means that
WBLEDD is the sum of all bleed mass flow entering the
mixing volume and the bleed percentage work value will
be applied to this total sum.

Subroutine GETGEMAP reads in performance data
for the turbine using the string BFILENAME which
contains the filename (and path) of the file which the
user has selected using the file browser in the turbine
module control panel. This map contains baseline
performance data for the turbine, which has been

normalized to the turbine design point. Subroutine
SEARCHMAP is called to determine the design point
value of mass flow rate (WPD) and enthalpy drop (HPD).
The mass flow correction coefficient, WCORR and the
enthalpy drop correction coefficient, HCORR, are
computed and the values saved for use in subsequent
computations. Also, the design point energy term,
EOUTD, which represents the rate of heat energy
removal by the turbine (5Q/dt < 0), is computed based
on the design point values of enthalpy drop (DHD), mass
flow rate (WDOTID) and the design bleed cooling flow
(WBLEDD).

The enthalpy and fuel-air ratio in the turbine, (HTURB)
and (FARTURB), respectively, are set equal to the
enthalpy and fuel-air ratio of the upstream mixing volume
and those values along with EOUTD are placed in the
enthalpy, faratio and energy data arrays for the turbine.

NSYS =

In response to an NSYS value of 8, the turbine
determines the operating point values of fuel-air ratio,
and mass flow rate.

The operating point bleed cooling mass flow rate
across the turbine it is obtained and summed to give the
total operating bleed flow used to cool the turbines
(WBLEEDOP). The operating point temperature (TINOP)

and pressure (PINOP) are then obtained from the
upstream mixing volume and the operating point spool
speed (XSPOOLOP) is obtained from the shaft. The
operating point temperature (TOUTOP) and pressure
(POUTOP) are then obtained from the downstream
mixing volume.

The points to be located on the performance map,
XTUR and YTUR, are computed next. XTUR represents
the operating point pressure ratio across the turbine

(POUTOP/PINOP) normalized to the design point
pressure ratio (POUTD/PIND). YTUR represents the
ratio of corrected operating point spool speed
(XSPOOLOP/sqrt(TINOP)) normalized to the corrected
design spool speed (XSPOLD/sqrt(TIND)). Subroutine
SEARCHMAP is called to determine the value of mass

flow rate (WP) based on the input values of XTUR and
YTUR. This values is then used to determine the

operating point value mass flow rate (WDOTOP).
The fuel-air ratio in the turbine (FARTURB) is set

equal to the fuel-air ratio of the upstream mixing volume
and is placed in the faratio data array for the turbine.
Also, the mass flow rate (WDOTOP) is placed in the
massflow data array.

NSYS = 5

In response to an NSYS value of 5, the turbine
determines the values of fuel-air ratio, and mass flow
rate. The bleed cooling mass flow rate across the turbine
it is obtained and summed to give the total bleed flow
used to cool the turbines (WBLEED). The temperature
(TIN) and pressure (PIN) are then obtained from the
upstream mixing volume and the spool speed (XSPOOL)
is obtained from the shaft. The temperature (TOUT) and
pressure (POUT) are then obtained from the
downstream mixing volume.

The points to be located on the performance map,
XTUR and YTUR, are computed next. XTUR represents
the pressure ratio across the turbine (POUT/PIN)

normalized to the design point pressure ratio (POUTD/
PIND). YTUR represents the ratio of corrected spool
speed (XSPOOUsqrt(TIN)) normalized to the corrected
design spool speed (XSPOLD/sqrt(TIND))

Subroutine SEARCHMAP is called to determine the

value of mass flow rate (WP) and enthalpy drop (HP)
based on the input values of XTUR and YTUR. These
values are used to determine the values of enthalpy
drop, (DH), mass flow rate (WDOTIN) and energy term,
EOUT.

The enthalpy and fuel-air ratio in the turbine, (HTURB)
and (FARTUR), respectively, are set equal to the
enthalpy and fuel-air ratio of the upstream mixing volume
and those values along with EOUT are placed in the
enthalpy, faratio and energy data arrays for the turbine.

5O

7.0 Simulation Comparison

In order to verify the TESS code, a test engine model
based on the DIGTEM test case (see reference 8), was
constructed and analyzed. This Section discusses the
development of the TESS equivalent of the DIGTEM test
engine and the difficulties encountered.

The DIGTEM test case represents a two-spool, two
stream augmented turbofan engine. Figure 7.1 shows a
schematic representation of that engine. Figure 7.2
depicts the DIGTEM analytical model which represents
the test engine.

7.1 DIGTEM Fan Model Incompatibility
with TESS

In using TESS to model the DIGTEM test engine, it
was found that the fan model used in DIGTEM did not fit

the object-based format used in TESS. To illustrate this

problem, consider the DIGTEM fan model as shown in
Figure 7.3.

p2_l- By,_,l-
T2--Pll'an -_o:/

! eypassI
Mv'3k-]'"l °u= I

| tkHPC

T2.2 I I

Figure 7.3 - DIGTEM Fan Model

The air mass flow into the fan is split into the bypass
and core sections. The core flow passes into the high-
pressure compressor (HPC), and the bypass flow goes
into the Bypass duct. Notice that in the DIGTEM model,

HIGH- I..LOW- PRES'_'_E
PRESSURE I TI.IRB_[

TURBINE-,_
13 \ t k6

STATION: 0 ? 2.1 2.Z 4 4.1 5 6

AUC,'_ITOR NOZZLE

I I I
7 $

Figure 7.1 - Schematic Representation of Test Engine

_ Overboard Bleed

Figure 7.2 - Analytical Model of Test Engine

51

no mixing volume is placed between the Fan and HPC to

provide an exit temperature and pressure for the core
section with which to determine the mass flow rate value

from the performance map. Instead, the DIGTEM fan

model uses the bypass pressure ratio (P]JP2) and the

fan shaft speed to determine the mass flow rate though
the entire fan from the performance map. It also

determines the pressure ratio across the Fan core (P2•2/

P2) from the map data at the same time. This value is
then used to determine the temperature at the exit of the

Fan core (T2.2) using isentropic relations. T2.2 and P2.2

are then used by the HPC to determine its mass flow

rate (tn HPC) from the HPC performance map. The HPC
mass flow rate represents the mass flow rate through the
core of the Fan and can then be used with the total mass

flow rate value through the fan to determine the mass

flow rate in the Bypass Duct:

mBypass = mFan, total- mHPC

' I P13 J Bypass I

ov, ouc,,
, I I

P2 Bypass P

T_--_Fan-co_,_ MV2.2 _ HPC I

Figure 7.4 - Revised DIGTEM Fan Model

This is the only instance in the DIGTEM model where

isentropic relations are used instead of a mixing volume
to provide temperature and pressure values. To provide

consistent use of a mixing volume to determine

temperature and pressure at component interfaces,

TESS requires that a mixing volume be used between all

physical flow components. Thus, the TESS

implementation of the DIGTEM fan section shown in

Figure 7.3 will have a mixing volume between the Fan
and the HPC, as shown in Figure 7.4.

Because all other physical components have only a

single upstream mixing volume and a single downstream

mixing volume, the fan shown in this configuration would
not be consistent with the other components. It was

decided that the generality and consistency-of-use of

each of the components were of paramount importance
in TESS, thus, the DIGTEM fan model was reconfigured

to be able to use the more general compressor model

provided in TESS. Two possible solutions were
considered to solve the problem of modeling the fan.

In the first approach, the bypass and core

performance data was "smeared" into a single set of

performance data representing overall fan performance.

A single compressor component could then be used to
model the fan. This, however, meant that there would

only be a single mixing volume between the fan and the

HPC, and the fan and the bypass duct (see Figure 7.5),

and thus only single values of temperature and pressure

for both the bypass and core sections.

_ Bypass l

Duct]

Figure 7.5 - TESS "Smeared-Fan" Configuration.

Comparing the DIGTEM test output values of

temperature and pressure in mixing volumes 2.2 and 13,

it was found that the values are relatively close, so this

approach could be considered in this case. For engine
models where this is suspected not to be the case, the

second approach may be considered•

In the second approach, the fan is split into two

separate components, with the core and bypass sections
each being modeled by a single compressor (see Figure

7.6) 1 . Using this approach, the conditions at the exits of

the core and bypass are independent, unlike that of the

first approach.

In order to implement the split-fan approach, the

efficiency, pressure ratio, and mass flow rate for both the

core and bypass were needed create separate

performance maps. The DIGTEM fan performance data

provided the efficiency and pressure ratio for each, but
the mass flow rate data was for the entire mass flow rate

through the fan (i.e., bypass + core).

To aid in matching the operating point conditions in

order to compare the TESS results with DIGTEM, the
mass flow data was scaled so that the mass flow rates in

the bypass and core matched the corresponding

DIGTEM values at the low-power operating point

(Operating point 3) and the design point (Operating point

1). In this manner, two separate performance data maps
were created.

Fan I Pl.3 I I PI3.I Bypass I

,, I'-i MV2"2 I_'_ Duct I

r2L 12 Fcoa_ P2.2 MV 2.2 P2.2 HPC

Figure 7.6 - TESS "Split-Fan" Configuration

7.2 TESS Test Engine Configurations
Two TESS engine configurations corresponding to the

DIGTEM test engine case were created. These

1. Although not indicated in this figure, both the fan core and fan

bypass compressor components are connected to the same shaft•

This is accomplished by the fact that the shaft module allows multi-

ple input (and output) connections.

52

correspond to the Smeared-Fan configuration model
(shown in Figure 7.7) and the Split-Fan configuration
model (shown in Figure 7.8).

7.3 Results of the Test Engine
Simulations

The test case used in each of the three engine models
represents a three second transient. The engine is
simulated as being on a static test stand (i.e. sea level
conditions and a Mach number of zero). The lowest
engine power operating point is used as the initial
operating point for the transient. The engine is then
accelerated to the design operating point in the first two
seconds of the transient and then held at that point for
the remainder of the transient. Engine acceleration is
controlled by the Combustor Fuel Mass Flow Rate
control schedule, which is depicted in Figure 7.9. The
variable geometry controls for each of the compressors

fan (represented as LPC) and HPC are controlled by
their respective control schedules shown in Figure 7.10.
The nozzle throat and exit areas are held constant at

their initial operating point values and the altitude and
Mach number of the engine are zero.

Each of the engine models were run to a balanced
condition at the initial operating point using the Newton-
Raphson method according to the control parameter
values shown in Table 7.1. Upon convergence, the
transient was begun using the Improved Euler numerical
method. The control parameters for the Improved Euler
method are shown in Table 7.2

Some of the results of the transient are plotted in the
Figures 7.11 (a) through (e). Shown are: Nozzle Gross
Thrust, Low-Speed Spool speeds, High-Speed Spool
speeds, Combustor pressure and, High Pressure
Turbine inlet temperature, as functions of time.

nozzle

Figure 7.7 - TESS Smeared-fan Test Engine

53

Figure 7.8 - TESS Split-fan Test Engine

Parameter Value

Fraction (FRAC) 0.25

Convergence Tolerance 0.0005

Lower Partial Limit 0.001

Upper Partial Limit 0.01

Maximum Iterations 50

Convergence Rate (TOLPCG) 0.7

Table 7.1 - Newton-Raphson Control Parameters.

Parameter Value

Fraction (FRAC) 0.25

Convergence Tolerance 0.0005

Lower Partial Limit 0.001

Upper Partial Limit 0.01

Maximum Iterations 50

Convergence Rate (TOLPCG) 0.7

Time Step (A t) 0. l sec

Table 7.2 - Improved Euler Control Parameters.

54

%
:3

LT.,

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0

Combustor Fuel Mass Flow Rate

o12oi, o18o1811o11211, 11611821o

Time (sec)

212 214 216 218 3.0

Figure 7.9 - Combustor Fuel Mass Flow Rate Control Schedule

0J

E
O
oJ
L_

>

5.0

0.0

-5.0

-10.0

-15.0

-20.0

-25.0 0.0 0.2

Variable Geometry Schedules

........ ."......-......:......=......:......=......t!

"i" , ," -- Ipc

............. I hpc

i
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Time (sec)

Figure 7.10 - Compressor Variable Geometry Control Schedules

-S

2

10000.0

9000.0

8000.0

7000.0

6000.0

5000.0

4000.0

3000.0

2000.0

1000.0

0.00. 0

Nozzle Gross Thrust

012 014 016 0'.8 1'.0 112 114 116 118 210 2'.2 214 2'.6 218 3.0

Time (sec)

Figure 7.11 (a) - Nozzle Gross Thrust Transient Plot

55

¢::

0

<

9500.0

9000.0

8500.0

8000.0

7500.0

7000.0

6500.0

6000.00. 0

Low-speed Spool Speed

_ Digtem

.,,_'_" ---- Split

,,,_, ¢¢¢;*" I Smeared

0'.2 0'.4 0'.6 0'.8 1'.0 1'.2 114 116 1'.8 210 2'.2 2'.4 2'.6

Time (sec)

Figure 7.11 (b)-Low-speed Spool Transient Plot

218 3.0

;>
¢)

0

C_

¢,0

12000.0

11500.0

11000.0

10500.0

10000.0

9500.0

9000.00. 0

High-speed Spool Speed

_ Di_tem

,,_,,,'" Split I
i _;" [........ Smeared I

0:2 0:4 0:6 0:8 110 172 174 1:6 118 2:0 272 2:4 276 218 3.0

Time (sec)

Figure 7.11 (c) - High-speed Spool Transient Plot

Combustor Stagnation Pressure

o_

&

0

-,_

eft)

280.0

240.0

200.0

160.0

120.0

80.00. 0

.,_.,_j'_ Smeared

J I0012 0.4 016 0'3 1. 112 114 116 118 210 212 214 2'.6 218 3.0

Time (sec)

Figure 7.11 (d) - Combustor Stagnation Pressure Transient Plot

56

_=
2

c)

2600.0

2400.0

2200.0

2000.0

1800.0

1600.0

1400.00.0

HP Turbine Inlet Stagnation Temperature

,., __,_I _'_

P_

e,, _S

,,'_ 1_ Digtem
,,_] Split

,,2" [....... Smeared

012 014 016 018 110 112 114 116 118 210 212 214 216 218 3.0

Time (sec)

Figure 7.11 (e) -Turbine Inlet Stagnation Temperature Transient Plot

@

,.Q

o

200.0

190.0

180.0

170.0

160.0

150.0

140.0

130.0

120.0

110.0

100.0 0.0

Fan Mass Flow Rate

Dipg:tm

I Smeared

i i ! i I i i i i i i i i,0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2 6

Time (sec)

218 3.0

Figure 7.12 - Comparison of Fan Mass Flow Rates

The results indicate that while the values for each of

the three different models do not agree precisely, they
are very close. The reason for the discrepancies is due
to the difficulty in matching the mass flow rates in the
LPC (fan). Figure 7.12 shows a plot of the mass flow rate
in the fan for each of the different models. As can be

seen, neither the smeared nor the split fan models match
identically with the DIGTEM model. The discrepancies
introduced by the different mass flow rate values

propagate downstream through the engine causing
differences in mass flow rates in other components,
which in turn affects the other engine state values.

5?

8.0 Zooming

In this section, a prototype implementation of the

zooming concept, which is to be utilized in the

Numerical Propulsion System Simulation (NPSS)

project, is described. Zooming allows for codes which
model at different levels of fidelity to be integrated

within a single simulation providing the user with the

ability to "zoom in" and investigate relevant physical

processes occurring in an engine component. Due to the

computationally intensive nature of higher fidelity

codes, and the methods utilized to carry out the

zooming, parallel and distributed programming

techniques are utilized.

This section describes the development of a

framework which allows a higher-fidelity flow-solver,

such as a 2-D axi-symmetric or fully 3-D Euler/Navier-

Stokes solver, to be integrated within the low-fidelity

NPSS propulsion system simulator. The low-fidelity

system simulator used is the Turbofan Engine System
Simulator (TESS) described in the previous sections of

this report, and the high-fidelity flow solver is the

Advanced Ducted Propfan Analysis Code (ADPAC)

[10]. The PVM parallel distributed message passing

package [11] is used to handle the communication and
distribution of data between the ADPAC simulations

placed on a heterogeneous network of workstations.

8.1 Introduction

Traditionally, propulsion system simulations have
utilized mathematical models based on estimated or

empirically determined component characteristics to

represent the complete "baseline" engine model.

Typically, this is a one-dimensional flow path model
which is used to determine engine system performance,

system dynamics and provide controls modeling. The

operational characteristics of the individual system

components are supplied in the form of "performance

maps", which along with design geometry information
and dynamic information, can be used to calculate

engine thrust and weight, as well as engine performance

over a wide range of operating conditions for both

steady-state and transient simulations. However, to

provide descriptions of the physical processes occurring

in an engine component beyond that supplied by a

performance map, or to create data for cases when

performance data are not available, requires the use of a

higher fidelity component simulation.
Recent advances in simulation methods and

computational power have made possible such analysis

models. These models are more useful since they

provide the ability to simulate both component and

inter-component flow details during the cycle, providing

for a more direct accounting and analysis of interactions

among engine components. By integrating a higher

fidelity component simulation within a low-fidelity
system simulation, it is possible to "zoom in" on the

relevant flow physics occurring in the component. Such

a scheme would allow a designer to quickly and

efficiently determine the effects of component design

changes on the operation of both a component as well as

the entire propulsion system.

The current research is focused on "zooming in" on

the fan component of an aircraft propulsion system. This
is depicted in Figure 8.1. Here the fan component of a

one-dimensional "baseline" engine model has been

"zoomed" to a three-dimensional analysis. This type of

detailed analysis would be performed, for example, to

study the effects of a new fan blade design, sudden inlet

distortions, tip treatment modifications, etc. on engine

response.
Implementation of the zooming concept is difficult,

due mainly to the inability to accurately resolve high-

fidelity flow fields from a single value as supplied from
the low-fidelity system simulator. In order for the

zooming to be accurate, the upstream and downstream

boundary values (which are single valued), must be

extrapolated to define a suitable three-dimensional
distribution of field variables such that when integrated

over, the original single-valued boundary conditions are
recovered.

To illustrate this, consider the "zooming" simulation

for the fan component as depicted in Figure 8.2. Here
the one-dimensional fan component provides the inlet

boundary values of stagnation pressure (P0), stagnation

temperature (To), and Mach number (Ma); and the exit
boundary value of static pressure (p). These single-

valued boundary conditions are then extrapolated to

appropriate three-dimensional field distributions which

are applied as boundary conditions to the high-fidelity
solution domain. These boundary conditions are

subsequently used to determine the flow field solutions
which satisfy the three-dimensional Navier-Stokes or

Euler equations for the given domain. Next, the flow

field variables are integrated to determine the space-

averaged values of mass-flow rate, stagnation pressure

ratio, and stagnation temperature ratio. The averaged

stagnation pressure ratio value is then compared with

the stagnation pressure ratio defined across the one-
dimensional model. If the two ratios match, then the

extrapolated field distributions are proved to be suitable

representations and the averaged values may be used in
the one-dimensional simulation. Typically, however, the

space-averaged stagnation pressure ratio will not

initially match the low-fidelity simulator pressure ratio,

and the three-dimensional boundary condition

representations must be redefined and the above process

repeated until the necessary values match.

58

Initially,aniterativeapproachwasusedtoattemptto
matchtheboundaryconditions.However,it wasfound
thatthisisextremelydifficult,requiringmanyiterations
to matchtheboundaryconditionsandsubsequently
causinga significantincreasein thesimulationtime.
Furthermore,dueto thenumericalmethodsusedto
solvethesystemof equationsgoverningtheengine
operation,usinganiterativemethodsometimescaused
thesystemto enterintoanoscillatorymodewhere
convergencecouldnotbeachieved.

Anotherpossiblesolutionmethodtotheproblemof
matchingtheboundaryvaluesistoparallelizethehigh-
fidelity simulations.This is accomplishedby
distributingseveralidenticalcopiesof thehigh-fidelity
flowsolveracrossacollectionof machines.Thehost
machine(i.e.,the machinerunningthelow-fidelity
simulation)passesthenecessaryparameterstotheflow
solversontheremotemachinesandthesolversarethen
runinparallelusingslightlydifferentboundaryvalues.
Uponcompletion,eachof theindividualflowsolutions
are integratedto determinethe single-valuedflow
parameters(asdescribedabove),andthesevaluesare
returnedto thehostmachine.Thisprocesscreatesa
single-curveperformancemapwhichcanbeusedto
matchtheflowparametersimpressedbythelow-fidelity
simulator.

By takingadvantageof theparallelnatureof this
method,it ispossibletoreducethesimulationtimeto
approximatelythatof asinglehigh-fidelitysimulation.
Furthermore,thedistributivenatureof themethodis
naturallysuitedto theapplicationof computationally

intensivehigh-fidelityflowsolvers,asthesecanbe
distributedon the appropriatehigh-performance
computerplatformsuchasasuper-computer.

8.2 Zooming Framework

The zooming strategy which utilizes the

parallelization of the high-fidelity flow solvers

described in the previous section has been implemented

in a prototypical zooming framework consisting of the

following computer codes and systems:

• TESS - A propulsion system simulator run-

ning within the Application Visualization

System.

• ADPAC - A fully three-dimensional Navier-

Stokes/Euler flow analysis package capable

of providing detailed flow analysis of the fan
component in a turbofan engine.

• PVM - A parallel distributed message-passing

package.

This section presents an overview of TESS, ADPAC and

PVM, and describes the prototype zooming framework

formed by the combination of these systems.

8.2.1 Turbofan Engine System

Simulator (TESS)

TESS is an object-based, one-dimensional, transient,

thermodynamic aircraft engine simulator which runs

under the Application Visualization System (AVS). This

integrated system provides the graphical user interface

IEn_

[__ HP U-_ LP _

[_l_[omi_ng 1-1 e.[-L.y..] -[,_._,,,l_,.[-[V] -[Turbine[-1V [-[Turbine[-[._y.j -1_ ,.].....

Fan

3-D Simulation

Figure 8.1 - A data flow network representing "zooming" on the fan component

59

andoperatingenvironmentforgraphicalconstructionof
arbitrary engine configurations,selectingand
controllingsteady-stateandtransientengineoperation,
andgraphicaldisplayofsimulationsresults.

Enginecomponents(e.g.,compressor,turbine,duct,
etc.)arerepresentedgraphicallyasAVSmoduleicons,
orsimplymodules,andareinitiallylocatedin theAVS
ModuleLibraryarea.Enginecomponentmodulesare
selectedby "dragging"thedesiredmodulefromthe
libraryareaintotheWorkspacearea.Whenamoduleis
broughtinto theWorkspace,a controlpanelfor that
componentisdisplayedin thelefthandwindow.Here
theoperationalcharacteristicsof thecomponentare
definedby theuser(e.g.,thecomponentname,mass
flowrate,designpointperformancedata).Thisprocess
isrepeatedforeachofthedesiredenginecomponentsto
beincludedin theenginemodel.Oncethesemodules
havebeenarrangedin theWorkspace,theuserusesthe
mousetoconnectthemodulestoestablishthephysical
connectionsoftheengine.

Onceallofthecomponentshavebeenconnectedand
theirinputdataentered,theusercanselectthelengthof
timefor thetransient,anddefinehowthegoverning
equationsareto besolvednumericallyfor boththe
steady-stateandtransientportionsof thesimulation.

Currently,for steady-statesolutions,the usermay
chooseeitherNewton-RaphsonorFourth-orderRunge-
Kuttamethods.Fortransientsolutions,theusermay
chooseeitherModifiedEuler,Fourth-orderRunge-
Kutta,Adams,or Gearmethods.Whensimulation
executionisbegun,TESSfirstattemptsto balancethe
engineat theinitialoperatingpointusingthesteady-
statebalancingmethod.Oncetheengineisbalanced,the
transientis begunandproceedsup to thenumberof
simulationsecondsdefinedbytheuser.

8.2.2 Advanced Ducted Propfan

Analysis Code (ADPAC)

The high-fidelity flow solver program used in the

current research to model the operation of the fan

component is the Advanced Ducted Propfan Analysis
Code (ADPAC). ADPAC is a three-dimensional Euler/

Navier-Stokes numerical analysis tool developed to

study high-speed ducted propfan aircraft propulsions

systems. The program utilizes a three-dimensional,

time-marching numerical procedure along with a

flexible, coupled 2-D/3-D multiple block geometric grid

representation to predict the flowfield in and around the
fan.

Inlet I-D Fan

Component

Apply inlet

Boundary
Conditions:
pff T0, Ma

Exit

I==i lli

3-D Fan Simulation Module

Integrated values of
- massflow rate
- stagnation pressure
ratio

- stagnation temperature
ratio

I
Apply exit
Boundary
Conditions:

P

I

Figure 8.2 - Representation of boundary value extrapolation, interpolation, and matching

60

8.2.3 Parallel Virtual Machine (PVM)
The Parallel Virtual Machine (PVM) is a software

system that permits a network of heterogeneous Unix

computers to be used as a single large parallel computer.
Using PVM, a user-defined collection of different

computers, known as the virtual machine, is used to

provide aggregate power for solving large

computational problems.

The PVM system is composed of a daemon which

resides on all of the computers making up the virtual

machine, and a library of PVM interface routines which

supply user-callable routines. These functions, along
with the PVM daemon, allow a PVM application on one

computer to automatically start up tasks (computational

processes) on other computers in the virtual machine

and communicate data to and from the task by using

message-passing constructs.

8.3 Prototype Zooming System

A prototype zooming system has been constructed by

combining TESS, ADPAC and PVM. This system is

defined by two suites of codes: the first, residing on the
local (host) machine, runs AVS and TESS; the second,

residing on each of the remote machines, includes Unix

shell scripts, FORTRAN code and the ADPAC
executable. Additionally, PVM is resident on each

machine which is to be used in distributing the zooming

system.

A new TESS engine component module, fan Multi-

ADPAC, was created to provide the user interface and

functionality for the zooming system. In general, the

module performs the following actions:

• Handles the basic data transfer between itself

and the other engine component modules

according to the TESS data passing paradigm

• Establishes and configures the PVM connec-
tions between the local and remote machines

• Spawns the remote tasks using PVM

• Controls the data transfer between the

ADPAC simulations and TESS

To utilize the fan Multi-ADPAC module in a TESS

engine simulation, the user need only start PVM on a

local machine and drag the fan Multi-ADPAC module
into an engine model. Defining the ADPAC control

parameters and the remote machines on which to spawn

the ADPAC simulations is accomplished through the

TESS graphical user interface, which creates an AVS

pop-up window containing the necessary input data

widgets (see Figure 8.3).

Upon starting the TESS simulation data connections

to the remote machines are established automatically by

the fan Multi-ADPAC module by dynamically

configuring the PVM virtual machine to include the
user-defined list of remote machines. During the

system's attempt to balance the engine at the initial

operating point, fan performance data will be needed for

calculations in TESS, and the fan Multi-ADPAC module

will initiate the "zooming" process to compute the

necessary fan flow data.

Figure 8.3 - fan Multi-ADPAC module control panels

61

Machine 1

Machine 2

A VS Module Icon representing

the Fan Component

jJ:/
Distributed ADPAC applications spawned
via PVM on heterogenous network

/ /
Machine 3 Machine 4 Machine 5

Figure 8.4 - Parallel distribution of ADPAC simulations on heterogeneous network

To begin the zooming process, the fan Multi-ADPAC

code enters a loop which establishes a PVM connection

to each of the remote machines, spawns a remote slave

program called adpacslave, and broadcasts the

boundary condition parameters from TESS to

adpacslave (see Figure 8.4). The fan Multi-ADPAC

module then begins a second loop to wait for the

simulation results. Since all of the ADPAC simulation

results must be returned to the fan Multi-ADPAC module

before they can be used in TESS, a blocking receive

function was utilized for simplicity. Because each of the

spawned adpacslave tasks have unique data

associated with them, the receive function checks each

returned message for the appropriate task identifier (tid)

and message tag (msgtag). This is necessary so that the

space-averaged results may correctly match the

corresponding boundary conditions.

Adpacslave

runadpac script

makeinput

Boundary
Conditions

ADPAC

Data

ADPAC grid file

mbave

Out
Data

Averaged
Results

Figure 8.5 - Remote code suite flow chart

Stagnation/---- Curve data point

pressure / created by a single

ratio / ADPA C simulation

AP oi

_ _Constant

RPM

_ curve

lip

W i, AZoi

Mass-flow rate,

Stagnation temperature ratio

Figure 8.6 - Map curve created by zooming

62

The operation of the remote code suite is presented in

the flowchart shown in Figure 8.5. When executed,

adpacslave first writes the boundary conditions to a

file, then performs a system call to execute a Unix shell

script called runadpac. This script executes several

FORTRAN executable programs:

• makeinput uses the boundary condition

data to create an ADPAC input data file.

• ADPAC computes the fan flowfield solution

using the ADPAC input data and grid data

representing the fan component physical

geometry.

• mbave, a multi-block averaging program,

integrates the three-dimensional flow solu-

tion to give the single (space-averaged) flow
values which are needed in the TESS system
simulation.

After mbave has finished executing and output the

space-averaged results to a file, the shell script exits and

process control returns to adpacslave which takes

the space-averaged values and returns them, via PVM,

to the fan Multi-ADPA C module.
Once all of the remote tasks have run, the results are

collected in the fan Multi-ADPAC module. This data

creates a single curve where each of the data points on

the curve represents the space-averaged variables

computed by a single ADPAC simulation (see Figure

8.7). These data are then interpolated to match the

stagnation pressure ratio across the fan, impressed by
the TESS simulation, to determine the stagnation

temperature ratio and mass flow rate. These values are
then used by TESS to continue the complete propulsion

system simulation.

The above process is repeated each time fan

performance data is needed by TESS. To reduce overall

simulation time, the space-averaged values are retained

and used to create a performance map. Before running
flow solutions, this data is checked to see if the current

operating conditions are within the data range; if so, the
data is interpolated and used in the system simulation. In

this manner, the simulation time may be significantly

reduced. This also has the added benefit of creating a

performance map which can be used in subsequent non-

zooming TESS simulations.

8.4 Results and Conclusions

To demonstrate the utility of this zooming simulation

system, the fan component of the NASA/GE Energy

Efficient Engine was zoomed and the steady-state
operation of the engine studied. The zooming

framework was successfully applied on a heterogenous

system of Unix workstations connected over both local

and wide-area networks. The local machine used was an

SGI Iris 4D/440VGX computer located at the University
of Toledo and the remote machines were IBM RS6000

computers located at NASA's Lewis Advanced Cluster
Environment (LACE).

The model predictions were found not to significantly

deviate from those of experimentally-based simulations.

Results from the model simulations suggest that the

developed strategy is adequate for modeling the inter-
component interactions. However, the effectiveness of

this method is dependent on many factors which affect
the time needed for the simulation and the amount of

computer resources needed. The following list several of

the parameters which were found to influence the

effectiveness of the zooming strategy:

• initialflow start-up solutions. This parameter

affects the number of iterations of high fidel-

ity solver needed to converge, which in turn
increases the simulation time and increases

the load on computer resources.

• number of points per curve. This parameter

affects the ability of the system simulation to

converge to steady-state or a transient time

step. The accuracy of the "performance

curve" interpolation, used to match the

boundary conditions, is dependent on the

number of ADPAC flow solutions being

spawned. By supplying more points per

curve, the accuracy is increased without a

significant increase in overall simulation
time. However, amount of computational

resources needed is significantly increased.

• numerical solver used by low-fidelity simula-
tion. The different numerical solvers offered

in TESS were found to have very different
effects on simulation time and resource use.

This mainly manifested itself in the number
of "zooming" calls which were needed to

attain convergence, but also in the length of
time the solver needed to achieve conver-

gence.

63

9.0 LAPIN/TESS Zooming

The objective of this work was to evaluate the development

and operation of a low-level zooming simulation by coupling

the Large Perturbation Inlet (LAPIN) code with the TESS

engine simulation environment running under the Application

Visualization System (AVS). The low-level zooming is due to

the fact that LAPIN, which utilizes a one-dimensional finite-

difference simulation, models at a higher-fidelity than the

TESS engine system, which uses a lumped-parameter

approach. This provides the ability to determine axial

distributions of flow field variables in the inlet without

modeling the complete engine as one-dimensional.

To provide for a more efficient and flexible computing

system, the capability for heterogeneous distribution of the

LAPIN code has been incorporated. This allows LAPIN to be

located on a remote computer platform and connected with the

TESS system operating on a local computer host. The Parallel

Virtual Machine (PVM) parallel distributed message passing

package is used to handle the communication and distribution

of data between LAPIN and TESS.

9.1 LAPIN/TESS Framework

The first step in integrating LAPIN with TESS was to create a

new TESS engine component to represent a jet propulsion

system inlet component. As with all engine components in the

TESS system, this component is graphically represented in the

AVS system by an AVS module icon (see Figure 9.1). This

new module, called Inlet�LAPIN is located on the local host

machine and contains the source for the LAPIN module which

is loaded into the AVS system. This module provides a user
interface for the LAPIN code as well as the standard AVS

module icon which is used to graphically integrate LAPIN into

an engine simulation. This module handles the data transfer

between itself and the other engine component modules,

establishes and configures the PVM connections between the

local and remote machine, spawns the remote LAPIN task

using PVM, and controls the data transfer between LAPIN and

TESS.

Figure 9.1: Inlet/LAPIN AVS Module Icon

To provide the most flexibility, a suite of codes (see Figure

9.2) was utilized to run LAPIN on the remote computer. In this

manner, the LAPIN source code does not need to be modified

in order to integrate LAPIN with TESS. The first program,

mkinput-lapin, constructs the LAPIN input file using data

from lapin-bcfile, dat, Then LAPIN executes,

reading data from the input file and outputting results to

2lapin.out which is read by the third program,

converge. This program determines the converged inlet flow
field values which are to be returned to TESS. The slave-

lapin program controls the execution of the other three

programs and handles the PVM communications with Inlet/

LAPIN receiving input data for mkinput-lapin and returning

results from converge.

I slave-lapin

miscellaneous

LAPIN

I converge

llgaOllnOllllllllllllllh

lapin-input.default l
||l|l|||l||||||||l||||||

Iapin. da t

program generated file

user-supplied file

Figure 9.2: Slave-LAPIN Flow Chart

9.2 Integration Difficulties

There arose problems in integrating LAPIN within TESS as a

result of differences in the simulation models used by LAPIN

and TESS. The fact that LAPIN requires a mass flow down-

stream boundary condition (BC) causes considerable difficulty

in integrating LAPIN into TESS. TESS was designed to use

stagnation (total) temperature (TT) and stagnation (total)

pressure (PT) as the BC's of a component and to use these

BC's to compute the mass flow rate in a component. In a

normal TESS simulation, these stagnation temperature and

stagnation pressure BC's are defined by the mixing volumes

(or environment) located at the inlet and exit boundaries of

each component.

For example in a compressor component (see Figure 9.3),

the upstream stagnation pressure BC is supplied by the mixing

volume located at the compressor inlet and the downstream

64

stagnationpressureBCissuppliedbythemixingvolume
locatedat thecompressorexit.TheseBC'sareusedto
computethestagnationpressureratioacrossthecomponent
whichis usedto determiningthemassflowratein the
compressorusingaperformancemap.Intum,themassflow
ratesofacomponentareusedbyamixingvolumetocompute
thedynamicmassflowchangesbetweencomponents.

Figure9.3:TypicalCompressorset-up

TheLAPINcodedoesnotfitthismodelentirely:it does

require inlet conditions of Mach number, static pressure and

static temperature ! which can be supplied from the TESS

environment component, but LAPIN does not utilize pressure

or temperature conditions at the exit boundary condition.

Instead, LAPIN utilizes a mass flow rate value as the exit

boundary condition. Furthermore, since the inlet exit mass

flow rate is defined, there is no need to compute the mass flow
rate in the inlet.

TESS operates by running the engine components in a

sequential order which is derived from the path of fluid flow

through the engine. Thus, the inlet/LAPIN component runs

before any component connected to it's exit. For example,

consider the system shown in Figure 9.4.

available if the compressor runs before the inlet/LAPIN

component.

In the current implementation, it is assumed that the inlet

exit values ofT T and PT are unchanged from its inlet values of

TT and PT. This assumes that there are no losses due to
shocks or viscous effects in the inlet. The inlet/LAPIN

component then runs first, but only passes the T T and PT
values to the compressor, The compressor then runs to

determine the mass flow rate in the compressor, and finally the

inlet/LAPIN component is run to determine the inlet

performance data.

9.3 Results

A LAPIN inlet model for the EEE engine was constructed and

incorporated into an TESS network representing the EEE

engine. The engine simulation was then run for a variety of

transient engine operations ranging from take-off to cruise

conditions with nominal results.

Figure 9.4: Inlet/LAPIN set-up

The environment component would run first, passing TT,

PT, and Mach values to the Inlet/LAPIN code. Next, the

LAPIN component would execute. However, at this point the

compressor has not computed the mass flow rate value needed

for the LAPIN down-stream BC. In order for the down-stream

BC value of mass flow rate to be available, the compressor

must execute first. However, in order for the compressor to

run, it needs the T T, PT values from the inlet; which are not

1. TESS provides stagnation values, but the

static conditions can be derived from the

stagnation conditions using the Mach number.

65

[11

[2]

[31

[4]

[5]

[61

[7]

[81

[91

[lO]

[ll]

References

Claus, R.W., Evans, A.L., Lytle, J.K., and Nichols,

L.D. "Numerical Propulsion System Simulation,"

Computing Systems in Engineering, 2, 4 (Apr.

1991), 357-364.

Claus, R.W., Evans, A.L., Follen, G.J.

"Multidisciplinary Propulsion Simulation Using

NPSS," 4th AIAA/USAF/NASA/OAI Symposium on

Multi-disciplinary Analysis and Optimization,

Cleveland, Ohio, Sep. 21-23, 1992.

Advanced Visual Systems Inc. AVS Developer's

Guide (Release 4.0), Part number: 320-0013-02,

Rev. B, Advanced Visual Systems Inc., Waltham

Mass,. May 1992.

Reed, J.A. "Development of an Interactive Graphical

Aircraft Propulsion System Simulator," Master of

Science Thesis, University of Toledo, August 1993.

G. Booch, "Object-Oriented Design: With

Applications," Benjamin/Cummings Publishing

Company, Inc., 1991.

J. H. Keenan and J. Kays, "Gas Tables," John Wiley

& Sons, Inc., 1948

J. R. Szuch, "HYDES - A Generalized Hybrid

Computer Program for Studying Turbojet or

Turbofan Engine Dynamics," NASA TM X-3014,
1974.

A. H. Shapiro, "The Dynamics and

Thermodynamics of Compressible Fluid Flow: Vol

I," Ronald Press Company, 1953

C. J. Daniele, S. M. Krosel, J. R. Szuch, and E. J.

Westerkamp, "Digital Computer Program for

Generating Dynamic Turbofan Engine Models

(DIGTEM)," NASA TM 83446, 1983.

Hall, E.J., Delaney, R.A., and Bettner, J.L.

"Investigation of Advanced Counterrotation Blade

Configuration Concepts for High Speed Turboprop

Systems, Task 5 - Unsteady Counterrotation Ducted

Propfan Analysis Computer Program User's

Manual," NASA CR-187125, Jan. 1993.

Sunderam, V.S. "PVM: A Framework for Parallel

Distributed Computing," Journal of Concurrency:

Practice and Experience, 2 (4), (Dec. 1990), 315-

339.

66

